Domestic appliances energy optimization with model predictive control

Detalhes bibliográficos
Autor(a) principal: Rodrigues,EMG
Data de Publicação: 2017
Outros Autores: Godina,R, Pouresmaeil,E, Ferreira,JR, João Catalão
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/4835
http://dx.doi.org/10.1016/j.enconman.2017.03.061
Resumo: A vital element in making a sustainable world is correctly managing the energy in the domestic sector. Thus, this sector evidently stands as a key one for to be addressed in terms of climate change goals. Increasingly, people are aware of electricity savings by turning off the equipment that is not been used, or connect electrical loads just outside the on-peak hours. However, these few efforts are not enough to reduce the global energy consumption, which is increasing. Much of the reduction was due to technological improvements, however with the advancing of the years new types of control arise. Domestic appliances with the purpose of heating and cooling rely on thermostatic regulation technique. The study in this paper is focused on the subject of an alternative power management control for home appliances that require thermal regulation. In this paper a Model Predictive Control scheme is assessed and its performance studied and compared to the thermostat with the aim of minimizing the cooling energy consumption through the minimization of the energy cost while satisfying the adequate temperature range for the human comfort. In addition, the Model Predictive Control problem formulation is explored through tuning weights with the aim of reducing energetic consumption and cost. For this purpose, the typical consumption of a 24 h period of a summer day was simulated a three-level tariff scheme was used. The new contribution of the proposal is a modulation scheme of a two-level Model Predictive Control's control signal as an interface block between the Model Predictive Control output and the domestic appliance that functions as a two-state power switch, thus reducing the Model Predictive Control implementation costs in home appliances with thermal regulation requirements.
id RCAP_e526c65afb7f406b05684d77be6b1fa4
oai_identifier_str oai:repositorio.inesctec.pt:123456789/4835
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Domestic appliances energy optimization with model predictive controlA vital element in making a sustainable world is correctly managing the energy in the domestic sector. Thus, this sector evidently stands as a key one for to be addressed in terms of climate change goals. Increasingly, people are aware of electricity savings by turning off the equipment that is not been used, or connect electrical loads just outside the on-peak hours. However, these few efforts are not enough to reduce the global energy consumption, which is increasing. Much of the reduction was due to technological improvements, however with the advancing of the years new types of control arise. Domestic appliances with the purpose of heating and cooling rely on thermostatic regulation technique. The study in this paper is focused on the subject of an alternative power management control for home appliances that require thermal regulation. In this paper a Model Predictive Control scheme is assessed and its performance studied and compared to the thermostat with the aim of minimizing the cooling energy consumption through the minimization of the energy cost while satisfying the adequate temperature range for the human comfort. In addition, the Model Predictive Control problem formulation is explored through tuning weights with the aim of reducing energetic consumption and cost. For this purpose, the typical consumption of a 24 h period of a summer day was simulated a three-level tariff scheme was used. The new contribution of the proposal is a modulation scheme of a two-level Model Predictive Control's control signal as an interface block between the Model Predictive Control output and the domestic appliance that functions as a two-state power switch, thus reducing the Model Predictive Control implementation costs in home appliances with thermal regulation requirements.2017-12-22T18:10:35Z2017-01-01T00:00:00Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/4835http://dx.doi.org/10.1016/j.enconman.2017.03.061engRodrigues,EMGGodina,RPouresmaeil,EFerreira,JRJoão Catalãoinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:19:55Zoai:repositorio.inesctec.pt:123456789/4835Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:26.490931Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Domestic appliances energy optimization with model predictive control
title Domestic appliances energy optimization with model predictive control
spellingShingle Domestic appliances energy optimization with model predictive control
Rodrigues,EMG
title_short Domestic appliances energy optimization with model predictive control
title_full Domestic appliances energy optimization with model predictive control
title_fullStr Domestic appliances energy optimization with model predictive control
title_full_unstemmed Domestic appliances energy optimization with model predictive control
title_sort Domestic appliances energy optimization with model predictive control
author Rodrigues,EMG
author_facet Rodrigues,EMG
Godina,R
Pouresmaeil,E
Ferreira,JR
João Catalão
author_role author
author2 Godina,R
Pouresmaeil,E
Ferreira,JR
João Catalão
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Rodrigues,EMG
Godina,R
Pouresmaeil,E
Ferreira,JR
João Catalão
description A vital element in making a sustainable world is correctly managing the energy in the domestic sector. Thus, this sector evidently stands as a key one for to be addressed in terms of climate change goals. Increasingly, people are aware of electricity savings by turning off the equipment that is not been used, or connect electrical loads just outside the on-peak hours. However, these few efforts are not enough to reduce the global energy consumption, which is increasing. Much of the reduction was due to technological improvements, however with the advancing of the years new types of control arise. Domestic appliances with the purpose of heating and cooling rely on thermostatic regulation technique. The study in this paper is focused on the subject of an alternative power management control for home appliances that require thermal regulation. In this paper a Model Predictive Control scheme is assessed and its performance studied and compared to the thermostat with the aim of minimizing the cooling energy consumption through the minimization of the energy cost while satisfying the adequate temperature range for the human comfort. In addition, the Model Predictive Control problem formulation is explored through tuning weights with the aim of reducing energetic consumption and cost. For this purpose, the typical consumption of a 24 h period of a summer day was simulated a three-level tariff scheme was used. The new contribution of the proposal is a modulation scheme of a two-level Model Predictive Control's control signal as an interface block between the Model Predictive Control output and the domestic appliance that functions as a two-state power switch, thus reducing the Model Predictive Control implementation costs in home appliances with thermal regulation requirements.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-22T18:10:35Z
2017-01-01T00:00:00Z
2017
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/4835
http://dx.doi.org/10.1016/j.enconman.2017.03.061
url http://repositorio.inesctec.pt/handle/123456789/4835
http://dx.doi.org/10.1016/j.enconman.2017.03.061
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131600633462784