Modeling river water temperature with limiting forcing data

Detalhes bibliográficos
Autor(a) principal: Almeida, Manuel C.
Data de Publicação: 2023
Outros Autores: Coelho, Pedro S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/159678
Resumo: Publisher Copyright: © 2023 Manuel C. Almeida.
id RCAP_e53e03624f25782b2fd8d293d3f7dc80
oai_identifier_str oai:run.unl.pt:10362/159678
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Modeling river water temperature with limiting forcing dataAir2stream v1.0.0, machine learning and multiple regressionModelling and SimulationEarth and Planetary Sciences(all)SDG 15 - Life on LandPublisher Copyright: © 2023 Manuel C. Almeida.The prediction of river water temperature is of key importance in the field of environmental science. Water temperature datasets for low-order rivers are often in short supply, leaving environmental modelers with the challenge of extracting as much information as possible from existing datasets. Therefore, identifying a suitable modeling solution for the prediction of river water temperature with a large scarcity of forcing datasets is of great importance. In this study, five models, forced with the meteorological datasets obtained from the fifth-generation atmospheric reanalysis, ERA5-Land, are used to predict the water temperature of 83 rivers (with 98% missing data): three machine learning algorithms (random forest, artificial neural network and support vector regression), the hybrid Air2stream model with all available parameterizations and a multiple regression. The machine learning hyperparameters were optimized with a tree-structured Parzen estimator, and an oversampling-undersampling technique was used to generate synthetic training datasets. In general terms, the results of the study demonstrate the vital importance of hyperparameter optimization and suggest that, from a practical modeling perspective, when the number of predictor variables and observed river water temperature values are limited, the application of all the models considered in this study is crucial. Basically, all the models tested proved to be the best for at least one station. The root mean square error (RMSE) and the Nash-Sutcliffe efficiency (NSE) values obtained for the ensemble of all model results were 2.75±1.00 and 0.56±0.48°C, respectively. The model that performed the best overall was random forest (annual mean - RMSE: 3.18±1.06°C; NSE: 0.52±0.23). With the application of the oversampling-undersampling technique, the RMSE values obtained with the random forest model were reduced from 0.00% to 21.89% (μ=8.57%; σ=8.21%) and the NSE values increased from 1.1% to 217.0% (μ=40%; σ=63%). These results suggest that the solution proposed has the potential to significantly improve the modeling of water temperature in rivers with machine learning methods, as well as providing increased scope for its application to larger training datasets and the prediction of other types of dependent variables. The results also revealed the existence of a logarithmic correlation among the RMSE between the observed and predicted river water temperature and the watershed time of concentration. The RMSE increases by an average of 0.1°C with a 1h increase in the watershed time of concentration (watershed area: μ=106km2; σ=153).MARE - Centro de Ciências do Mar e do AmbienteRUNAlmeida, Manuel C.Coelho, Pedro S.2023-11-07T22:09:19Z2023-07-202023-07-20T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article30application/pdfhttp://hdl.handle.net/10362/159678eng1991-959XPURE: 75591282https://doi.org/10.5194/gmd-16-4083-2023info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:42:07Zoai:run.unl.pt:10362/159678Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:57:39.086040Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Modeling river water temperature with limiting forcing data
Air2stream v1.0.0, machine learning and multiple regression
title Modeling river water temperature with limiting forcing data
spellingShingle Modeling river water temperature with limiting forcing data
Almeida, Manuel C.
Modelling and Simulation
Earth and Planetary Sciences(all)
SDG 15 - Life on Land
title_short Modeling river water temperature with limiting forcing data
title_full Modeling river water temperature with limiting forcing data
title_fullStr Modeling river water temperature with limiting forcing data
title_full_unstemmed Modeling river water temperature with limiting forcing data
title_sort Modeling river water temperature with limiting forcing data
author Almeida, Manuel C.
author_facet Almeida, Manuel C.
Coelho, Pedro S.
author_role author
author2 Coelho, Pedro S.
author2_role author
dc.contributor.none.fl_str_mv MARE - Centro de Ciências do Mar e do Ambiente
RUN
dc.contributor.author.fl_str_mv Almeida, Manuel C.
Coelho, Pedro S.
dc.subject.por.fl_str_mv Modelling and Simulation
Earth and Planetary Sciences(all)
SDG 15 - Life on Land
topic Modelling and Simulation
Earth and Planetary Sciences(all)
SDG 15 - Life on Land
description Publisher Copyright: © 2023 Manuel C. Almeida.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-07T22:09:19Z
2023-07-20
2023-07-20T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/159678
url http://hdl.handle.net/10362/159678
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1991-959X
PURE: 75591282
https://doi.org/10.5194/gmd-16-4083-2023
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 30
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138158813642752