On Cops and Robbers on $G^{\Xi}$ and cop-edge critical graphs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/21068 |
Resumo: | Cop Robber game is a two player game played on an undirected graph. In this game cops try to capture a robber moving on the vertices of the graph. The cop number of a graph is the least number of cops needed to guarantee that the robber will be caught. In this paper we presents results concerning games on $G^{\Xi}$, that is the graph obtained by connecting the corresponding vertices in $G$ and its complement $\overline{G}$. In particular we show that for planar graphs $c(G^{\Xi})\leq 3$. Furthermore we investigate the cop-edge critical graphs, i.e. graphs that for any edge $e$ in $G$ we have either $c(G-e)<c(G) \text{ or } c(G-e)>c(G)$. We show couple examples of cop-edge critical graphs having cop number equal to $3$. |
id |
RCAP_e560be487526a064ab27b3265c365b87 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/21068 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On Cops and Robbers on $G^{\Xi}$ and cop-edge critical graphsCops and RobbersVertex-pursuit gamesCop Robber game is a two player game played on an undirected graph. In this game cops try to capture a robber moving on the vertices of the graph. The cop number of a graph is the least number of cops needed to guarantee that the robber will be caught. In this paper we presents results concerning games on $G^{\Xi}$, that is the graph obtained by connecting the corresponding vertices in $G$ and its complement $\overline{G}$. In particular we show that for planar graphs $c(G^{\Xi})\leq 3$. Furthermore we investigate the cop-edge critical graphs, i.e. graphs that for any edge $e$ in $G$ we have either $c(G-e)<c(G) \text{ or } c(G-e)>c(G)$. We show couple examples of cop-edge critical graphs having cop number equal to $3$.University of Calgary2017-12-11T12:20:18Z2017-12-01T00:00:00Z2017-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/21068eng1715-0868Cardoso, Domingos M.Dominic, CharlesWitkowski, LukaszWitkowski, Marcininfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:05:22Zoai:ria.ua.pt:10773/21068Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:05:22Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On Cops and Robbers on $G^{\Xi}$ and cop-edge critical graphs |
title |
On Cops and Robbers on $G^{\Xi}$ and cop-edge critical graphs |
spellingShingle |
On Cops and Robbers on $G^{\Xi}$ and cop-edge critical graphs Cardoso, Domingos M. Cops and Robbers Vertex-pursuit games |
title_short |
On Cops and Robbers on $G^{\Xi}$ and cop-edge critical graphs |
title_full |
On Cops and Robbers on $G^{\Xi}$ and cop-edge critical graphs |
title_fullStr |
On Cops and Robbers on $G^{\Xi}$ and cop-edge critical graphs |
title_full_unstemmed |
On Cops and Robbers on $G^{\Xi}$ and cop-edge critical graphs |
title_sort |
On Cops and Robbers on $G^{\Xi}$ and cop-edge critical graphs |
author |
Cardoso, Domingos M. |
author_facet |
Cardoso, Domingos M. Dominic, Charles Witkowski, Lukasz Witkowski, Marcin |
author_role |
author |
author2 |
Dominic, Charles Witkowski, Lukasz Witkowski, Marcin |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Cardoso, Domingos M. Dominic, Charles Witkowski, Lukasz Witkowski, Marcin |
dc.subject.por.fl_str_mv |
Cops and Robbers Vertex-pursuit games |
topic |
Cops and Robbers Vertex-pursuit games |
description |
Cop Robber game is a two player game played on an undirected graph. In this game cops try to capture a robber moving on the vertices of the graph. The cop number of a graph is the least number of cops needed to guarantee that the robber will be caught. In this paper we presents results concerning games on $G^{\Xi}$, that is the graph obtained by connecting the corresponding vertices in $G$ and its complement $\overline{G}$. In particular we show that for planar graphs $c(G^{\Xi})\leq 3$. Furthermore we investigate the cop-edge critical graphs, i.e. graphs that for any edge $e$ in $G$ we have either $c(G-e)<c(G) \text{ or } c(G-e)>c(G)$. We show couple examples of cop-edge critical graphs having cop number equal to $3$. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-11T12:20:18Z 2017-12-01T00:00:00Z 2017-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/21068 |
url |
http://hdl.handle.net/10773/21068 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1715-0868 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
University of Calgary |
publisher.none.fl_str_mv |
University of Calgary |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817543611568357376 |