A computational literature review of football performance analysis through probabilistic topic modeling

Detalhes bibliográficos
Autor(a) principal: Principe, Vitor Ayres
Data de Publicação: 2022
Outros Autores: de Souza Vale, Rodrigo Gomes, de Castro, Juliana Brandão Pinto, Carvano, Luiz Marcelo, Henriques, Roberto André Pereira, Lobo, Victor José de Almeida e Sousa, de Alkmim Moreira Nunes, Rodolfo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/148220
Resumo: Principe, V. A., de Souza Vale, R. G., de Castro, J. B. P., Carvano, L. M., Henriques, R. A. P., Lobo, V. J. D. A. E. S., & de Alkmim Moreira Nunes, R. (2022). A computational literature review of football performance analysis through probabilistic topic modeling. Artificial Intelligence Review, 55(2). [Advanced online publication on 4 April 2021]. https://doi.org/10.1007/s10462-021-09998-8
id RCAP_e5e26d4ace15aedf6d68f2f08323159e
oai_identifier_str oai:run.unl.pt:10362/148220
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A computational literature review of football performance analysis through probabilistic topic modelingComputational literature reviewFootballLDALiterature reviewPerformance analysisTopic modelsLanguage and LinguisticsLinguistics and LanguageArtificial IntelligencePrincipe, V. A., de Souza Vale, R. G., de Castro, J. B. P., Carvano, L. M., Henriques, R. A. P., Lobo, V. J. D. A. E. S., & de Alkmim Moreira Nunes, R. (2022). A computational literature review of football performance analysis through probabilistic topic modeling. Artificial Intelligence Review, 55(2). [Advanced online publication on 4 April 2021]. https://doi.org/10.1007/s10462-021-09998-8This research aims to illustrate the potential use of concepts, techniques, and mining process tools to improve the systematic review process. Thus, a review was performed on two online databases (Scopus and ISI Web of Science) from 2012 to 2019. A total of 9649 studies were identified, which were analyzed using probabilistic topic modeling procedures within a machine learning approach. The Latent Dirichlet Allocation method, chosen for modeling, required the following stages: 1) data cleansing, and 2) data modeling into topics for coherence and perplexity analysis. All research was conducted according to the standards of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses in a fully computerized way. The computational literature review is an integral part of a broader literature review process. The results presented met three criteria: (1) literature review for a research area, (2) analysis and classification of journals, and (3) analysis and classification of academic and individual research teams. The contribution of the article is to demonstrate how the publication network is formed in this particular field of research, and how the content of abstracts can be automatically analyzed to provide a set of research topics for quick understanding and application in future projects.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNPrincipe, Vitor Ayresde Souza Vale, Rodrigo Gomesde Castro, Juliana Brandão PintoCarvano, Luiz MarceloHenriques, Roberto André PereiraLobo, Victor José de Almeida e Sousade Alkmim Moreira Nunes, Rodolfo2023-01-26T22:14:44Z2022-02-012022-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article21application/pdfhttp://hdl.handle.net/10362/148220eng0269-2821PURE: 29167086https://doi.org/10.1007/s10462-021-09998-8info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:29:36Zoai:run.unl.pt:10362/148220Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:53:16.757623Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A computational literature review of football performance analysis through probabilistic topic modeling
title A computational literature review of football performance analysis through probabilistic topic modeling
spellingShingle A computational literature review of football performance analysis through probabilistic topic modeling
Principe, Vitor Ayres
Computational literature review
Football
LDA
Literature review
Performance analysis
Topic models
Language and Linguistics
Linguistics and Language
Artificial Intelligence
title_short A computational literature review of football performance analysis through probabilistic topic modeling
title_full A computational literature review of football performance analysis through probabilistic topic modeling
title_fullStr A computational literature review of football performance analysis through probabilistic topic modeling
title_full_unstemmed A computational literature review of football performance analysis through probabilistic topic modeling
title_sort A computational literature review of football performance analysis through probabilistic topic modeling
author Principe, Vitor Ayres
author_facet Principe, Vitor Ayres
de Souza Vale, Rodrigo Gomes
de Castro, Juliana Brandão Pinto
Carvano, Luiz Marcelo
Henriques, Roberto André Pereira
Lobo, Victor José de Almeida e Sousa
de Alkmim Moreira Nunes, Rodolfo
author_role author
author2 de Souza Vale, Rodrigo Gomes
de Castro, Juliana Brandão Pinto
Carvano, Luiz Marcelo
Henriques, Roberto André Pereira
Lobo, Victor José de Almeida e Sousa
de Alkmim Moreira Nunes, Rodolfo
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv NOVA Information Management School (NOVA IMS)
Information Management Research Center (MagIC) - NOVA Information Management School
RUN
dc.contributor.author.fl_str_mv Principe, Vitor Ayres
de Souza Vale, Rodrigo Gomes
de Castro, Juliana Brandão Pinto
Carvano, Luiz Marcelo
Henriques, Roberto André Pereira
Lobo, Victor José de Almeida e Sousa
de Alkmim Moreira Nunes, Rodolfo
dc.subject.por.fl_str_mv Computational literature review
Football
LDA
Literature review
Performance analysis
Topic models
Language and Linguistics
Linguistics and Language
Artificial Intelligence
topic Computational literature review
Football
LDA
Literature review
Performance analysis
Topic models
Language and Linguistics
Linguistics and Language
Artificial Intelligence
description Principe, V. A., de Souza Vale, R. G., de Castro, J. B. P., Carvano, L. M., Henriques, R. A. P., Lobo, V. J. D. A. E. S., & de Alkmim Moreira Nunes, R. (2022). A computational literature review of football performance analysis through probabilistic topic modeling. Artificial Intelligence Review, 55(2). [Advanced online publication on 4 April 2021]. https://doi.org/10.1007/s10462-021-09998-8
publishDate 2022
dc.date.none.fl_str_mv 2022-02-01
2022-02-01T00:00:00Z
2023-01-26T22:14:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/148220
url http://hdl.handle.net/10362/148220
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0269-2821
PURE: 29167086
https://doi.org/10.1007/s10462-021-09998-8
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 21
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138123785961472