Unfolding the drivers for academic success: The case of ISCTE-IUL

Detalhes bibliográficos
Autor(a) principal: Gil, Paulo Alexandre Vieira Diniz Ferreira
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/20069
Resumo: Predicting the success of academic students is a major topic in the higher education research community. This study presents a data mining approach to predict academic success in a Portuguese University called ISCTE-IUL, unveiling the features that better explain failures. A dataset of 10 curricular years for bachelor’s degrees has been analysed. Features’ selection resulted in a characterising set of 68 features, encompassing socio-demographic, social origin, previous education, special statutes and educational path information. Understanding features’ collection timings, distinct predicting was conducted. Based on entrance date, end of the first and the second curricular semesters, three distinct data models were proposed and tested. An additional model was designed for outlier degrees (i.e., a 4-year Bachelor). Six algorithms were tested for modelling. A support vector machines (SVM) model achieved the best overall performance and was selected to conduct a data-based sensitivity analysis. Relevance and impact review allowed extracting meaningful knowledge. This approach unfolded that previous evaluation performance, study gaps and age-related features play a major role in explaining failures at entrance stage. For subsequent stages, current evaluation performance features unveil their predicting power. Also, it should be noted that most of the features’ groups are represented on each model’s most relevant features, revealing that academic success is a combination of a wide range of distinct factors. These and many other findings, such as, age-related features increasing impact at the end first curricular semester, set a baseline for success improvement recommendations, and for easier data mining adoption by Higher Education institutions. Suggested guidelines include to provide study support groups to risk profiles and to create monitoring frameworks. From a practical standpoint, a data-driven decision-making framework based on these models can be used to promote academic success.
id RCAP_e5e70cebc94098a17088fbe7749bdf0a
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/20069
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Unfolding the drivers for academic success: The case of ISCTE-IULAcademic successData miningModellingSVMFeaturesSensitivity analysisSucesso escolarModelaçãoCaracterísticasAnálise de sensibilidadeISCTE Instituto Universitário de LisboaEnsino superiorModelos de previsãoPredicting the success of academic students is a major topic in the higher education research community. This study presents a data mining approach to predict academic success in a Portuguese University called ISCTE-IUL, unveiling the features that better explain failures. A dataset of 10 curricular years for bachelor’s degrees has been analysed. Features’ selection resulted in a characterising set of 68 features, encompassing socio-demographic, social origin, previous education, special statutes and educational path information. Understanding features’ collection timings, distinct predicting was conducted. Based on entrance date, end of the first and the second curricular semesters, three distinct data models were proposed and tested. An additional model was designed for outlier degrees (i.e., a 4-year Bachelor). Six algorithms were tested for modelling. A support vector machines (SVM) model achieved the best overall performance and was selected to conduct a data-based sensitivity analysis. Relevance and impact review allowed extracting meaningful knowledge. This approach unfolded that previous evaluation performance, study gaps and age-related features play a major role in explaining failures at entrance stage. For subsequent stages, current evaluation performance features unveil their predicting power. Also, it should be noted that most of the features’ groups are represented on each model’s most relevant features, revealing that academic success is a combination of a wide range of distinct factors. These and many other findings, such as, age-related features increasing impact at the end first curricular semester, set a baseline for success improvement recommendations, and for easier data mining adoption by Higher Education institutions. Suggested guidelines include to provide study support groups to risk profiles and to create monitoring frameworks. From a practical standpoint, a data-driven decision-making framework based on these models can be used to promote academic success.O sucesso académico é um dos tópicos mais explorados nos estudos sobre o ensino superior. Este trabalho apresenta uma abordagem de data mining para a previsão do sucesso académico no ISCTE-IUL. Numa abordagem focada no insucesso, são estudados os fatores que explicam estes casos. Neste estudo foram utilizados dados de licenciatura de 10 anos curriculares. Foram analisadas 68 características sociodemográficas, origem social, percurso escolar anterior (ensino secundário), estatutos especiais e percurso académico. Foram adotados diferentes vetores de análise para o primeiro ano curricular (entrada e final dos primeiro e segundo semestres curriculares), dando origem a 3 modelos distintos. Um modelo suplementar foi projetado para cursos especiais. Entre os seis algoritmos de modelação testados, SVM obteve a melhor performance, sendo utilizado para a análise de sensibilidade. O processo de extração de conhecimento indicou que fatores como desempenho anterior, interrupções do percurso educacional e idade, demonstram grande impacto no (in)sucesso num estágio inicial. Nos estágios seguintes, fatores de performance atuais revelam um grande poder de previsão do (in)sucesso. A maior parte dos grupos de características faz-se representar, nas características mais relevantes de cada modelo. Estes e outros resultados, como o aumento do impacto dos fatores relacionadas com a idade no final do segundo semestre curricular, suportam a criação de recomendações institucionais. Por exemplo, criar grupos de apoio ao estudo para perfis de risco e criar ferramentas de monitorização são algumas das diretrizes sugeridas. Em suma, é possível criar uma ferramenta de apoio à decisão, baseada nos modelos apresentados, podendo ser utilizada pelo ISCTE-IUL para promover o sucesso académico.2020-03-10T10:34:02Z2019-09-19T00:00:00Z2019-09-192019-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/20069TID:202446964engGil, Paulo Alexandre Vieira Diniz Ferreirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:46:34Zoai:repositorio.iscte-iul.pt:10071/20069Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:22:27.346270Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Unfolding the drivers for academic success: The case of ISCTE-IUL
title Unfolding the drivers for academic success: The case of ISCTE-IUL
spellingShingle Unfolding the drivers for academic success: The case of ISCTE-IUL
Gil, Paulo Alexandre Vieira Diniz Ferreira
Academic success
Data mining
Modelling
SVM
Features
Sensitivity analysis
Sucesso escolar
Modelação
Características
Análise de sensibilidade
ISCTE Instituto Universitário de Lisboa
Ensino superior
Modelos de previsão
title_short Unfolding the drivers for academic success: The case of ISCTE-IUL
title_full Unfolding the drivers for academic success: The case of ISCTE-IUL
title_fullStr Unfolding the drivers for academic success: The case of ISCTE-IUL
title_full_unstemmed Unfolding the drivers for academic success: The case of ISCTE-IUL
title_sort Unfolding the drivers for academic success: The case of ISCTE-IUL
author Gil, Paulo Alexandre Vieira Diniz Ferreira
author_facet Gil, Paulo Alexandre Vieira Diniz Ferreira
author_role author
dc.contributor.author.fl_str_mv Gil, Paulo Alexandre Vieira Diniz Ferreira
dc.subject.por.fl_str_mv Academic success
Data mining
Modelling
SVM
Features
Sensitivity analysis
Sucesso escolar
Modelação
Características
Análise de sensibilidade
ISCTE Instituto Universitário de Lisboa
Ensino superior
Modelos de previsão
topic Academic success
Data mining
Modelling
SVM
Features
Sensitivity analysis
Sucesso escolar
Modelação
Características
Análise de sensibilidade
ISCTE Instituto Universitário de Lisboa
Ensino superior
Modelos de previsão
description Predicting the success of academic students is a major topic in the higher education research community. This study presents a data mining approach to predict academic success in a Portuguese University called ISCTE-IUL, unveiling the features that better explain failures. A dataset of 10 curricular years for bachelor’s degrees has been analysed. Features’ selection resulted in a characterising set of 68 features, encompassing socio-demographic, social origin, previous education, special statutes and educational path information. Understanding features’ collection timings, distinct predicting was conducted. Based on entrance date, end of the first and the second curricular semesters, three distinct data models were proposed and tested. An additional model was designed for outlier degrees (i.e., a 4-year Bachelor). Six algorithms were tested for modelling. A support vector machines (SVM) model achieved the best overall performance and was selected to conduct a data-based sensitivity analysis. Relevance and impact review allowed extracting meaningful knowledge. This approach unfolded that previous evaluation performance, study gaps and age-related features play a major role in explaining failures at entrance stage. For subsequent stages, current evaluation performance features unveil their predicting power. Also, it should be noted that most of the features’ groups are represented on each model’s most relevant features, revealing that academic success is a combination of a wide range of distinct factors. These and many other findings, such as, age-related features increasing impact at the end first curricular semester, set a baseline for success improvement recommendations, and for easier data mining adoption by Higher Education institutions. Suggested guidelines include to provide study support groups to risk profiles and to create monitoring frameworks. From a practical standpoint, a data-driven decision-making framework based on these models can be used to promote academic success.
publishDate 2019
dc.date.none.fl_str_mv 2019-09-19T00:00:00Z
2019-09-19
2019-09
2020-03-10T10:34:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/20069
TID:202446964
url http://hdl.handle.net/10071/20069
identifier_str_mv TID:202446964
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134785918992384