Role of Cyclin-Dependent Kinase 5 in the Neurodegenerative Process Triggered by Amyloid-Beta and Prion Peptides: Implications for Alzheimer’s Disease and Prion-Related Encephalopathies
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/8499 https://doi.org/10.1007/s10571-007-9224-3 |
Resumo: | Abstract Tau hyperphosphorylation, amyloid plaques, and neuronal death are major neuropathological features of Alzheimer’s disease (AD) and Prion-related encephalopathies (PRE). Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase, active in post-mitotic neurons, where it regulates survival and death pathways. Overactivation of Cdk5 is conferred by p25, a truncated fragment of the p35 activator formed upon calpain activation. Cdk5 deregulation causes abnormal phosphorylation of microtubule-associated protein tau, leading to neurodegeneration. In this work we investigated the involvement of Cdk5 in the neurodegeneration triggered by amyloid-beta (Aß) and prion (PrP) peptides, the culprit agents of AD and PRE. As a work model, we used cultured rat cortical neurons treated with Aß1–40 and PrP106–126 synthetic peptides. The obtained data show that apoptotic neuronal death caused by both the peptides was in part due to Cdk5 deregulation. After peptide treatment, p25 levels were significantly enhanced in a pattern consistent with the augment in calpain activity. Moreover, Aß1–40 and PrP106–126 increased the levels of tau protein phosphorylated at Ser202/Thr205. Cdk5 (roscovitine) and calpain (MDL28170) inhibitors reverted tau hyperphosphorylation and prevented neuronal death caused by Aß1–40 and PrP106–126. This study demonstrates, for the first time, that Cdk5 is involved in PrP-neurotoxicity. Altogether, our data suggests that Cdk5 plays an active role in the pathogenesis of AD and PRE. |
id |
RCAP_e62894496058a8bfb55b2fff2f1e61cb |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/8499 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Role of Cyclin-Dependent Kinase 5 in the Neurodegenerative Process Triggered by Amyloid-Beta and Prion Peptides: Implications for Alzheimer’s Disease and Prion-Related EncephalopathiesAbstract Tau hyperphosphorylation, amyloid plaques, and neuronal death are major neuropathological features of Alzheimer’s disease (AD) and Prion-related encephalopathies (PRE). Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase, active in post-mitotic neurons, where it regulates survival and death pathways. Overactivation of Cdk5 is conferred by p25, a truncated fragment of the p35 activator formed upon calpain activation. Cdk5 deregulation causes abnormal phosphorylation of microtubule-associated protein tau, leading to neurodegeneration. In this work we investigated the involvement of Cdk5 in the neurodegeneration triggered by amyloid-beta (Aß) and prion (PrP) peptides, the culprit agents of AD and PRE. As a work model, we used cultured rat cortical neurons treated with Aß1–40 and PrP106–126 synthetic peptides. The obtained data show that apoptotic neuronal death caused by both the peptides was in part due to Cdk5 deregulation. After peptide treatment, p25 levels were significantly enhanced in a pattern consistent with the augment in calpain activity. Moreover, Aß1–40 and PrP106–126 increased the levels of tau protein phosphorylated at Ser202/Thr205. Cdk5 (roscovitine) and calpain (MDL28170) inhibitors reverted tau hyperphosphorylation and prevented neuronal death caused by Aß1–40 and PrP106–126. This study demonstrates, for the first time, that Cdk5 is involved in PrP-neurotoxicity. Altogether, our data suggests that Cdk5 plays an active role in the pathogenesis of AD and PRE.2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/8499http://hdl.handle.net/10316/8499https://doi.org/10.1007/s10571-007-9224-3engCellular and Molecular Neurobiology. 27:7 (2007) 943-957Lopes, JoãoOliveira, CatarinaAgostinho, Paulainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-27T16:14:34Zoai:estudogeral.uc.pt:10316/8499Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:43:34.100222Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Role of Cyclin-Dependent Kinase 5 in the Neurodegenerative Process Triggered by Amyloid-Beta and Prion Peptides: Implications for Alzheimer’s Disease and Prion-Related Encephalopathies |
title |
Role of Cyclin-Dependent Kinase 5 in the Neurodegenerative Process Triggered by Amyloid-Beta and Prion Peptides: Implications for Alzheimer’s Disease and Prion-Related Encephalopathies |
spellingShingle |
Role of Cyclin-Dependent Kinase 5 in the Neurodegenerative Process Triggered by Amyloid-Beta and Prion Peptides: Implications for Alzheimer’s Disease and Prion-Related Encephalopathies Lopes, João |
title_short |
Role of Cyclin-Dependent Kinase 5 in the Neurodegenerative Process Triggered by Amyloid-Beta and Prion Peptides: Implications for Alzheimer’s Disease and Prion-Related Encephalopathies |
title_full |
Role of Cyclin-Dependent Kinase 5 in the Neurodegenerative Process Triggered by Amyloid-Beta and Prion Peptides: Implications for Alzheimer’s Disease and Prion-Related Encephalopathies |
title_fullStr |
Role of Cyclin-Dependent Kinase 5 in the Neurodegenerative Process Triggered by Amyloid-Beta and Prion Peptides: Implications for Alzheimer’s Disease and Prion-Related Encephalopathies |
title_full_unstemmed |
Role of Cyclin-Dependent Kinase 5 in the Neurodegenerative Process Triggered by Amyloid-Beta and Prion Peptides: Implications for Alzheimer’s Disease and Prion-Related Encephalopathies |
title_sort |
Role of Cyclin-Dependent Kinase 5 in the Neurodegenerative Process Triggered by Amyloid-Beta and Prion Peptides: Implications for Alzheimer’s Disease and Prion-Related Encephalopathies |
author |
Lopes, João |
author_facet |
Lopes, João Oliveira, Catarina Agostinho, Paula |
author_role |
author |
author2 |
Oliveira, Catarina Agostinho, Paula |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Lopes, João Oliveira, Catarina Agostinho, Paula |
description |
Abstract Tau hyperphosphorylation, amyloid plaques, and neuronal death are major neuropathological features of Alzheimer’s disease (AD) and Prion-related encephalopathies (PRE). Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase, active in post-mitotic neurons, where it regulates survival and death pathways. Overactivation of Cdk5 is conferred by p25, a truncated fragment of the p35 activator formed upon calpain activation. Cdk5 deregulation causes abnormal phosphorylation of microtubule-associated protein tau, leading to neurodegeneration. In this work we investigated the involvement of Cdk5 in the neurodegeneration triggered by amyloid-beta (Aß) and prion (PrP) peptides, the culprit agents of AD and PRE. As a work model, we used cultured rat cortical neurons treated with Aß1–40 and PrP106–126 synthetic peptides. The obtained data show that apoptotic neuronal death caused by both the peptides was in part due to Cdk5 deregulation. After peptide treatment, p25 levels were significantly enhanced in a pattern consistent with the augment in calpain activity. Moreover, Aß1–40 and PrP106–126 increased the levels of tau protein phosphorylated at Ser202/Thr205. Cdk5 (roscovitine) and calpain (MDL28170) inhibitors reverted tau hyperphosphorylation and prevented neuronal death caused by Aß1–40 and PrP106–126. This study demonstrates, for the first time, that Cdk5 is involved in PrP-neurotoxicity. Altogether, our data suggests that Cdk5 plays an active role in the pathogenesis of AD and PRE. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/8499 http://hdl.handle.net/10316/8499 https://doi.org/10.1007/s10571-007-9224-3 |
url |
http://hdl.handle.net/10316/8499 https://doi.org/10.1007/s10571-007-9224-3 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Cellular and Molecular Neurobiology. 27:7 (2007) 943-957 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133707802509312 |