Vibrations inside buildings due to subway railway traffic. Experimental validation of a comprehensive prediction model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/9513 |
Resumo: | The present paper focuses on the experimental validation of a numerical approach previously proposed by the authors for the prediction of vibrations inside buildings due to railway traffic in tunnels. The numerical model is based on the concept of dynamic substructuring and is composed by three autonomous models to simulate the following main parts of the problem: i) generation of vibrations (train-track interaction); ii) propagation of vibrations (track-tunnel-ground system); iii) reception of vibrations (building coupled to the ground). The experimental validation consists in the comparison between the results predicted by the proposed numerical model and the measurements performed inside a building due to the railway traffic in a shallow tunnel located in Madrid. Apart from the brief description of the numerical model and of the case study, the main options and simplifications adopted on the numerical modeling strategy are discussed. The balance adopted between accuracy and simplicity of the numerical approach proved to be a path to follow in order to transfer knowledge to engineering practice. Finally, the comparison between numerical and experimental results allowed finding a good agreement between both, fact that ensures the ability of the proposed modeling strategy to deal with real engineering practical problems. |
id |
RCAP_e667ce6e24d63c221e373a8779ef6614 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/9513 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Vibrations inside buildings due to subway railway traffic. Experimental validation of a comprehensive prediction modelVibrations due to railway traffic in tunnelsNumerical modelingExperimental validationVibrations inside buildingsThe present paper focuses on the experimental validation of a numerical approach previously proposed by the authors for the prediction of vibrations inside buildings due to railway traffic in tunnels. The numerical model is based on the concept of dynamic substructuring and is composed by three autonomous models to simulate the following main parts of the problem: i) generation of vibrations (train-track interaction); ii) propagation of vibrations (track-tunnel-ground system); iii) reception of vibrations (building coupled to the ground). The experimental validation consists in the comparison between the results predicted by the proposed numerical model and the measurements performed inside a building due to the railway traffic in a shallow tunnel located in Madrid. Apart from the brief description of the numerical model and of the case study, the main options and simplifications adopted on the numerical modeling strategy are discussed. The balance adopted between accuracy and simplicity of the numerical approach proved to be a path to follow in order to transfer knowledge to engineering practice. Finally, the comparison between numerical and experimental results allowed finding a good agreement between both, fact that ensures the ability of the proposed modeling strategy to deal with real engineering practical problems.ElsevierRepositório Científico do Instituto Politécnico do PortoLopes, PatríciaFernández Ruiz, JésusAlves Costa, PedroMedina Rodríguez, L.Cardoso, António Silva20162117-01-01T00:00:00Z2016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/9513eng10.1016/j.scitotenv.2015.11.016metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:50:55Zoai:recipp.ipp.pt:10400.22/9513Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:30:05.946350Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Vibrations inside buildings due to subway railway traffic. Experimental validation of a comprehensive prediction model |
title |
Vibrations inside buildings due to subway railway traffic. Experimental validation of a comprehensive prediction model |
spellingShingle |
Vibrations inside buildings due to subway railway traffic. Experimental validation of a comprehensive prediction model Lopes, Patrícia Vibrations due to railway traffic in tunnels Numerical modeling Experimental validation Vibrations inside buildings |
title_short |
Vibrations inside buildings due to subway railway traffic. Experimental validation of a comprehensive prediction model |
title_full |
Vibrations inside buildings due to subway railway traffic. Experimental validation of a comprehensive prediction model |
title_fullStr |
Vibrations inside buildings due to subway railway traffic. Experimental validation of a comprehensive prediction model |
title_full_unstemmed |
Vibrations inside buildings due to subway railway traffic. Experimental validation of a comprehensive prediction model |
title_sort |
Vibrations inside buildings due to subway railway traffic. Experimental validation of a comprehensive prediction model |
author |
Lopes, Patrícia |
author_facet |
Lopes, Patrícia Fernández Ruiz, Jésus Alves Costa, Pedro Medina Rodríguez, L. Cardoso, António Silva |
author_role |
author |
author2 |
Fernández Ruiz, Jésus Alves Costa, Pedro Medina Rodríguez, L. Cardoso, António Silva |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Lopes, Patrícia Fernández Ruiz, Jésus Alves Costa, Pedro Medina Rodríguez, L. Cardoso, António Silva |
dc.subject.por.fl_str_mv |
Vibrations due to railway traffic in tunnels Numerical modeling Experimental validation Vibrations inside buildings |
topic |
Vibrations due to railway traffic in tunnels Numerical modeling Experimental validation Vibrations inside buildings |
description |
The present paper focuses on the experimental validation of a numerical approach previously proposed by the authors for the prediction of vibrations inside buildings due to railway traffic in tunnels. The numerical model is based on the concept of dynamic substructuring and is composed by three autonomous models to simulate the following main parts of the problem: i) generation of vibrations (train-track interaction); ii) propagation of vibrations (track-tunnel-ground system); iii) reception of vibrations (building coupled to the ground). The experimental validation consists in the comparison between the results predicted by the proposed numerical model and the measurements performed inside a building due to the railway traffic in a shallow tunnel located in Madrid. Apart from the brief description of the numerical model and of the case study, the main options and simplifications adopted on the numerical modeling strategy are discussed. The balance adopted between accuracy and simplicity of the numerical approach proved to be a path to follow in order to transfer knowledge to engineering practice. Finally, the comparison between numerical and experimental results allowed finding a good agreement between both, fact that ensures the ability of the proposed modeling strategy to deal with real engineering practical problems. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2016-01-01T00:00:00Z 2117-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/9513 |
url |
http://hdl.handle.net/10400.22/9513 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1016/j.scitotenv.2015.11.016 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817553010454167552 |