Weighted Hardy and potential operators in the generalized Morrey spaces

Detalhes bibliográficos
Autor(a) principal: Persson, Lars-Erik
Data de Publicação: 2011
Outros Autores: Samko, Natasha
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/11731
Resumo: We study the weighted p -> q-boundedness of the multi-dimensional Hardy type operators in the generalized Morrey spaces L-p.phi(R-n, w) defined by an almost increasing function phi(r) and radial type weight w(vertical bar x vertical bar). We obtain sufficient conditions, in terms of some integral inequalities imposed on phi and w, for such a p -> q-boundedness. In some cases the obtained conditions are also necessary. These results are applied to derive a similar weighted p -> q-boundedness of the Riesz potential operator. (c) 2010 Elsevier Inc. All rights reserved.
id RCAP_e66b991ffc53b31fabd8e486f2172aa7
oai_identifier_str oai:sapientia.ualg.pt:10400.1/11731
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Weighted Hardy and potential operators in the generalized Morrey spacesSingular integral-operatorsFractional integralsMaximal operatorSufficient conditionsVariable exponentRiesz-potentialsBoundednessWe study the weighted p -> q-boundedness of the multi-dimensional Hardy type operators in the generalized Morrey spaces L-p.phi(R-n, w) defined by an almost increasing function phi(r) and radial type weight w(vertical bar x vertical bar). We obtain sufficient conditions, in terms of some integral inequalities imposed on phi and w, for such a p -> q-boundedness. In some cases the obtained conditions are also necessary. These results are applied to derive a similar weighted p -> q-boundedness of the Riesz potential operator. (c) 2010 Elsevier Inc. All rights reserved.Lulea University of Technology; FCT, Portugal [SFRH/BPD/34258/2006]Academic Press Inc Elsevier ScienceSapientiaPersson, Lars-ErikSamko, Natasha2018-12-07T14:57:51Z2011-052011-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/11731eng0022-247X10.1016/j.jmaa.2010.11.029info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:23:34Zoai:sapientia.ualg.pt:10400.1/11731Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:03:11.708744Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Weighted Hardy and potential operators in the generalized Morrey spaces
title Weighted Hardy and potential operators in the generalized Morrey spaces
spellingShingle Weighted Hardy and potential operators in the generalized Morrey spaces
Persson, Lars-Erik
Singular integral-operators
Fractional integrals
Maximal operator
Sufficient conditions
Variable exponent
Riesz-potentials
Boundedness
title_short Weighted Hardy and potential operators in the generalized Morrey spaces
title_full Weighted Hardy and potential operators in the generalized Morrey spaces
title_fullStr Weighted Hardy and potential operators in the generalized Morrey spaces
title_full_unstemmed Weighted Hardy and potential operators in the generalized Morrey spaces
title_sort Weighted Hardy and potential operators in the generalized Morrey spaces
author Persson, Lars-Erik
author_facet Persson, Lars-Erik
Samko, Natasha
author_role author
author2 Samko, Natasha
author2_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Persson, Lars-Erik
Samko, Natasha
dc.subject.por.fl_str_mv Singular integral-operators
Fractional integrals
Maximal operator
Sufficient conditions
Variable exponent
Riesz-potentials
Boundedness
topic Singular integral-operators
Fractional integrals
Maximal operator
Sufficient conditions
Variable exponent
Riesz-potentials
Boundedness
description We study the weighted p -> q-boundedness of the multi-dimensional Hardy type operators in the generalized Morrey spaces L-p.phi(R-n, w) defined by an almost increasing function phi(r) and radial type weight w(vertical bar x vertical bar). We obtain sufficient conditions, in terms of some integral inequalities imposed on phi and w, for such a p -> q-boundedness. In some cases the obtained conditions are also necessary. These results are applied to derive a similar weighted p -> q-boundedness of the Riesz potential operator. (c) 2010 Elsevier Inc. All rights reserved.
publishDate 2011
dc.date.none.fl_str_mv 2011-05
2011-05-01T00:00:00Z
2018-12-07T14:57:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/11731
url http://hdl.handle.net/10400.1/11731
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0022-247X
10.1016/j.jmaa.2010.11.029
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133266176901120