Intraday volatility estimation in high-frequency data using order book information

Detalhes bibliográficos
Autor(a) principal: Netze, Jules William Rudolf
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/70538
Resumo: This research conducts high-frequency intraday volatility estimations on the Euro Stoxx 50 Future under the multiplicative component GARCH framework, where the conditional volatility of high-frequency returns is decomposed into a daily, diurnal and stochastic intraday component. In contrast to existent research, this research covers a relatively long period of 423 trading days corresponding to about 345,000 1-minute observations. This study reveals that return series derived from the Limit Order Book have superior model features compared to simple trade returns. We find that these returns overcome the shortcomings of the welldocumented microstructure noise. Standardized residuals follow a white noise process and follow more closely a normal distribution compared to simple trade returns. However, this comes at the cost of larger coefficient instability and larger outliers in the estimated residuals.
id RCAP_e6b43dca747a50b3666b8ace07094f3e
oai_identifier_str oai:run.unl.pt:10362/70538
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Intraday volatility estimation in high-frequency data using order book informationGARCHVolatility estimationHigh-frequency dataLimit order bookDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis research conducts high-frequency intraday volatility estimations on the Euro Stoxx 50 Future under the multiplicative component GARCH framework, where the conditional volatility of high-frequency returns is decomposed into a daily, diurnal and stochastic intraday component. In contrast to existent research, this research covers a relatively long period of 423 trading days corresponding to about 345,000 1-minute observations. This study reveals that return series derived from the Limit Order Book have superior model features compared to simple trade returns. We find that these returns overcome the shortcomings of the welldocumented microstructure noise. Standardized residuals follow a white noise process and follow more closely a normal distribution compared to simple trade returns. However, this comes at the cost of larger coefficient instability and larger outliers in the estimated residuals.Rodrigues, Paulo Manuel MarquesRUNNetze, Jules William Rudolf2019-05-23T14:30:25Z2019-01-142019-01-14T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/70538TID:202225887enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:33:26Zoai:run.unl.pt:10362/70538Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:35:07.275728Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Intraday volatility estimation in high-frequency data using order book information
title Intraday volatility estimation in high-frequency data using order book information
spellingShingle Intraday volatility estimation in high-frequency data using order book information
Netze, Jules William Rudolf
GARCH
Volatility estimation
High-frequency data
Limit order book
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Intraday volatility estimation in high-frequency data using order book information
title_full Intraday volatility estimation in high-frequency data using order book information
title_fullStr Intraday volatility estimation in high-frequency data using order book information
title_full_unstemmed Intraday volatility estimation in high-frequency data using order book information
title_sort Intraday volatility estimation in high-frequency data using order book information
author Netze, Jules William Rudolf
author_facet Netze, Jules William Rudolf
author_role author
dc.contributor.none.fl_str_mv Rodrigues, Paulo Manuel Marques
RUN
dc.contributor.author.fl_str_mv Netze, Jules William Rudolf
dc.subject.por.fl_str_mv GARCH
Volatility estimation
High-frequency data
Limit order book
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic GARCH
Volatility estimation
High-frequency data
Limit order book
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description This research conducts high-frequency intraday volatility estimations on the Euro Stoxx 50 Future under the multiplicative component GARCH framework, where the conditional volatility of high-frequency returns is decomposed into a daily, diurnal and stochastic intraday component. In contrast to existent research, this research covers a relatively long period of 423 trading days corresponding to about 345,000 1-minute observations. This study reveals that return series derived from the Limit Order Book have superior model features compared to simple trade returns. We find that these returns overcome the shortcomings of the welldocumented microstructure noise. Standardized residuals follow a white noise process and follow more closely a normal distribution compared to simple trade returns. However, this comes at the cost of larger coefficient instability and larger outliers in the estimated residuals.
publishDate 2019
dc.date.none.fl_str_mv 2019-05-23T14:30:25Z
2019-01-14
2019-01-14T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/70538
TID:202225887
url http://hdl.handle.net/10362/70538
identifier_str_mv TID:202225887
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137972543553536