Intraday volatility estimation in high-frequency data using order book information
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/70538 |
Resumo: | This research conducts high-frequency intraday volatility estimations on the Euro Stoxx 50 Future under the multiplicative component GARCH framework, where the conditional volatility of high-frequency returns is decomposed into a daily, diurnal and stochastic intraday component. In contrast to existent research, this research covers a relatively long period of 423 trading days corresponding to about 345,000 1-minute observations. This study reveals that return series derived from the Limit Order Book have superior model features compared to simple trade returns. We find that these returns overcome the shortcomings of the welldocumented microstructure noise. Standardized residuals follow a white noise process and follow more closely a normal distribution compared to simple trade returns. However, this comes at the cost of larger coefficient instability and larger outliers in the estimated residuals. |
id |
RCAP_e6b43dca747a50b3666b8ace07094f3e |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/70538 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Intraday volatility estimation in high-frequency data using order book informationGARCHVolatility estimationHigh-frequency dataLimit order bookDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis research conducts high-frequency intraday volatility estimations on the Euro Stoxx 50 Future under the multiplicative component GARCH framework, where the conditional volatility of high-frequency returns is decomposed into a daily, diurnal and stochastic intraday component. In contrast to existent research, this research covers a relatively long period of 423 trading days corresponding to about 345,000 1-minute observations. This study reveals that return series derived from the Limit Order Book have superior model features compared to simple trade returns. We find that these returns overcome the shortcomings of the welldocumented microstructure noise. Standardized residuals follow a white noise process and follow more closely a normal distribution compared to simple trade returns. However, this comes at the cost of larger coefficient instability and larger outliers in the estimated residuals.Rodrigues, Paulo Manuel MarquesRUNNetze, Jules William Rudolf2019-05-23T14:30:25Z2019-01-142019-01-14T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/70538TID:202225887enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:33:26Zoai:run.unl.pt:10362/70538Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:35:07.275728Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Intraday volatility estimation in high-frequency data using order book information |
title |
Intraday volatility estimation in high-frequency data using order book information |
spellingShingle |
Intraday volatility estimation in high-frequency data using order book information Netze, Jules William Rudolf GARCH Volatility estimation High-frequency data Limit order book Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Intraday volatility estimation in high-frequency data using order book information |
title_full |
Intraday volatility estimation in high-frequency data using order book information |
title_fullStr |
Intraday volatility estimation in high-frequency data using order book information |
title_full_unstemmed |
Intraday volatility estimation in high-frequency data using order book information |
title_sort |
Intraday volatility estimation in high-frequency data using order book information |
author |
Netze, Jules William Rudolf |
author_facet |
Netze, Jules William Rudolf |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rodrigues, Paulo Manuel Marques RUN |
dc.contributor.author.fl_str_mv |
Netze, Jules William Rudolf |
dc.subject.por.fl_str_mv |
GARCH Volatility estimation High-frequency data Limit order book Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
GARCH Volatility estimation High-frequency data Limit order book Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
This research conducts high-frequency intraday volatility estimations on the Euro Stoxx 50 Future under the multiplicative component GARCH framework, where the conditional volatility of high-frequency returns is decomposed into a daily, diurnal and stochastic intraday component. In contrast to existent research, this research covers a relatively long period of 423 trading days corresponding to about 345,000 1-minute observations. This study reveals that return series derived from the Limit Order Book have superior model features compared to simple trade returns. We find that these returns overcome the shortcomings of the welldocumented microstructure noise. Standardized residuals follow a white noise process and follow more closely a normal distribution compared to simple trade returns. However, this comes at the cost of larger coefficient instability and larger outliers in the estimated residuals. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-05-23T14:30:25Z 2019-01-14 2019-01-14T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/70538 TID:202225887 |
url |
http://hdl.handle.net/10362/70538 |
identifier_str_mv |
TID:202225887 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137972543553536 |