Cartesian closed exact completions in topology
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/89417 https://doi.org/10.1016/j.jpaa.2019.06.003 |
Resumo: | Using generalized enriched categories, in this paper we show that Rosický's proof of cartesian closedness of the exact completion of the category of topological spaces can be extended to a wide range of topological categories over Set, like metric spaces, approach spaces, ultrametric spaces, probabilistic metric spaces, and bitopological spaces. In order to do so we prove a sufficient criterion for exponentiability of (T,V)-categories and show that, under suitable conditions, every injective (T,V)-category is exponentiable in (T,V)-Cat. |
id |
RCAP_e6f5d0707727ca23bec098c3066db278 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/89417 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Cartesian closed exact completions in topologyQuantale; Enriched category; (Probabilistic) metric space; Exponentiation; (Weakly) cartesian closed category; Exact completionUsing generalized enriched categories, in this paper we show that Rosický's proof of cartesian closedness of the exact completion of the category of topological spaces can be extended to a wide range of topological categories over Set, like metric spaces, approach spaces, ultrametric spaces, probabilistic metric spaces, and bitopological spaces. In order to do so we prove a sufficient criterion for exponentiability of (T,V)-categories and show that, under suitable conditions, every injective (T,V)-category is exponentiable in (T,V)-Cat.Elsevier2020-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/89417http://hdl.handle.net/10316/89417https://doi.org/10.1016/j.jpaa.2019.06.003enghttps://www.sciencedirect.com/science/article/pii/S0022404919301495Clementino, Maria ManuelHofmann, DirkRibeiro, Willianinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T01:31:12Zoai:estudogeral.uc.pt:10316/89417Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:09:44.520749Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Cartesian closed exact completions in topology |
title |
Cartesian closed exact completions in topology |
spellingShingle |
Cartesian closed exact completions in topology Clementino, Maria Manuel Quantale; Enriched category; (Probabilistic) metric space; Exponentiation; (Weakly) cartesian closed category; Exact completion |
title_short |
Cartesian closed exact completions in topology |
title_full |
Cartesian closed exact completions in topology |
title_fullStr |
Cartesian closed exact completions in topology |
title_full_unstemmed |
Cartesian closed exact completions in topology |
title_sort |
Cartesian closed exact completions in topology |
author |
Clementino, Maria Manuel |
author_facet |
Clementino, Maria Manuel Hofmann, Dirk Ribeiro, Willian |
author_role |
author |
author2 |
Hofmann, Dirk Ribeiro, Willian |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Clementino, Maria Manuel Hofmann, Dirk Ribeiro, Willian |
dc.subject.por.fl_str_mv |
Quantale; Enriched category; (Probabilistic) metric space; Exponentiation; (Weakly) cartesian closed category; Exact completion |
topic |
Quantale; Enriched category; (Probabilistic) metric space; Exponentiation; (Weakly) cartesian closed category; Exact completion |
description |
Using generalized enriched categories, in this paper we show that Rosický's proof of cartesian closedness of the exact completion of the category of topological spaces can be extended to a wide range of topological categories over Set, like metric spaces, approach spaces, ultrametric spaces, probabilistic metric spaces, and bitopological spaces. In order to do so we prove a sufficient criterion for exponentiability of (T,V)-categories and show that, under suitable conditions, every injective (T,V)-category is exponentiable in (T,V)-Cat. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/89417 http://hdl.handle.net/10316/89417 https://doi.org/10.1016/j.jpaa.2019.06.003 |
url |
http://hdl.handle.net/10316/89417 https://doi.org/10.1016/j.jpaa.2019.06.003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0022404919301495 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133992275935232 |