Cartesian closed exact completions in topology

Detalhes bibliográficos
Autor(a) principal: Clementino, Maria Manuel
Data de Publicação: 2020
Outros Autores: Hofmann, Dirk, Ribeiro, Willian
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/89417
https://doi.org/10.1016/j.jpaa.2019.06.003
Resumo: Using generalized enriched categories, in this paper we show that Rosický's proof of cartesian closedness of the exact completion of the category of topological spaces can be extended to a wide range of topological categories over Set, like metric spaces, approach spaces, ultrametric spaces, probabilistic metric spaces, and bitopological spaces. In order to do so we prove a sufficient criterion for exponentiability of (T,V)-categories and show that, under suitable conditions, every injective (T,V)-category is exponentiable in (T,V)-Cat.
id RCAP_e6f5d0707727ca23bec098c3066db278
oai_identifier_str oai:estudogeral.uc.pt:10316/89417
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Cartesian closed exact completions in topologyQuantale; Enriched category; (Probabilistic) metric space; Exponentiation; (Weakly) cartesian closed category; Exact completionUsing generalized enriched categories, in this paper we show that Rosický's proof of cartesian closedness of the exact completion of the category of topological spaces can be extended to a wide range of topological categories over Set, like metric spaces, approach spaces, ultrametric spaces, probabilistic metric spaces, and bitopological spaces. In order to do so we prove a sufficient criterion for exponentiability of (T,V)-categories and show that, under suitable conditions, every injective (T,V)-category is exponentiable in (T,V)-Cat.Elsevier2020-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/89417http://hdl.handle.net/10316/89417https://doi.org/10.1016/j.jpaa.2019.06.003enghttps://www.sciencedirect.com/science/article/pii/S0022404919301495Clementino, Maria ManuelHofmann, DirkRibeiro, Willianinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T01:31:12Zoai:estudogeral.uc.pt:10316/89417Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:09:44.520749Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Cartesian closed exact completions in topology
title Cartesian closed exact completions in topology
spellingShingle Cartesian closed exact completions in topology
Clementino, Maria Manuel
Quantale; Enriched category; (Probabilistic) metric space; Exponentiation; (Weakly) cartesian closed category; Exact completion
title_short Cartesian closed exact completions in topology
title_full Cartesian closed exact completions in topology
title_fullStr Cartesian closed exact completions in topology
title_full_unstemmed Cartesian closed exact completions in topology
title_sort Cartesian closed exact completions in topology
author Clementino, Maria Manuel
author_facet Clementino, Maria Manuel
Hofmann, Dirk
Ribeiro, Willian
author_role author
author2 Hofmann, Dirk
Ribeiro, Willian
author2_role author
author
dc.contributor.author.fl_str_mv Clementino, Maria Manuel
Hofmann, Dirk
Ribeiro, Willian
dc.subject.por.fl_str_mv Quantale; Enriched category; (Probabilistic) metric space; Exponentiation; (Weakly) cartesian closed category; Exact completion
topic Quantale; Enriched category; (Probabilistic) metric space; Exponentiation; (Weakly) cartesian closed category; Exact completion
description Using generalized enriched categories, in this paper we show that Rosický's proof of cartesian closedness of the exact completion of the category of topological spaces can be extended to a wide range of topological categories over Set, like metric spaces, approach spaces, ultrametric spaces, probabilistic metric spaces, and bitopological spaces. In order to do so we prove a sufficient criterion for exponentiability of (T,V)-categories and show that, under suitable conditions, every injective (T,V)-category is exponentiable in (T,V)-Cat.
publishDate 2020
dc.date.none.fl_str_mv 2020-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/89417
http://hdl.handle.net/10316/89417
https://doi.org/10.1016/j.jpaa.2019.06.003
url http://hdl.handle.net/10316/89417
https://doi.org/10.1016/j.jpaa.2019.06.003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0022404919301495
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133992275935232