Machine learning agents for computer games
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/31371 |
Resumo: | In recent years, new Reinforcement Learning algorithms have been developed. These algorithms use Deep Neural Networks to represent the agent’s knowledge. After surpassing previous Artificial Intelligence (AI) milestones, such as Chess and Go, these Deep Reinforcement Learning (DRL) methods were able to surpass the human level in very complex games like Dota 2, where long-term planning is required and in which professional teams of human players train daily to win e-sports competitions. These algorithms start from scratch, do not use examples of human behavior, and can be applied in various domains. Learning from experience, new and better behaviors were discovered, indicating a lot of potential in these algorithms. However, they require a lot of computational power and training time. Computer games are used in an AI course at the University of Aveiro as an application domain of the AI knowledge acquired by students. The students should develop software agents for these games and try to get the best scores. The objective of this dissertation is to develop agents using the latest DRL techniques and to compare their performance with the agents developed by students. To begin with, DRL agents were developed for a simpler game like Tic-Tac-Toe, where various learning options will be addressed until a robust agent capable of playing against multiple opponents is created. Then, DRL agents capable of playing the version of Pac-Man used in the University of Aveiro course, in the 2018/19 academic year, were developed through the realization of various experiments where the parameters used in the learning process were modified in order to obtain better scores. The developed agent, that obtained the best score, is able to play in all game configurations used in the evaluation of the course and reached the top 7 ranking, among more than 50 agents developed by students that used hard-coded strategies with pathfinding algorithms. |
id |
RCAP_e6fa46d88cf6c8f99bb25fd54d3ef745 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/31371 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Machine learning agents for computer gamesMachine learningReinforcement learningDeep learningDeep reinforcement learningAgentsComputer gamesIn recent years, new Reinforcement Learning algorithms have been developed. These algorithms use Deep Neural Networks to represent the agent’s knowledge. After surpassing previous Artificial Intelligence (AI) milestones, such as Chess and Go, these Deep Reinforcement Learning (DRL) methods were able to surpass the human level in very complex games like Dota 2, where long-term planning is required and in which professional teams of human players train daily to win e-sports competitions. These algorithms start from scratch, do not use examples of human behavior, and can be applied in various domains. Learning from experience, new and better behaviors were discovered, indicating a lot of potential in these algorithms. However, they require a lot of computational power and training time. Computer games are used in an AI course at the University of Aveiro as an application domain of the AI knowledge acquired by students. The students should develop software agents for these games and try to get the best scores. The objective of this dissertation is to develop agents using the latest DRL techniques and to compare their performance with the agents developed by students. To begin with, DRL agents were developed for a simpler game like Tic-Tac-Toe, where various learning options will be addressed until a robust agent capable of playing against multiple opponents is created. Then, DRL agents capable of playing the version of Pac-Man used in the University of Aveiro course, in the 2018/19 academic year, were developed through the realization of various experiments where the parameters used in the learning process were modified in order to obtain better scores. The developed agent, that obtained the best score, is able to play in all game configurations used in the evaluation of the course and reached the top 7 ranking, among more than 50 agents developed by students that used hard-coded strategies with pathfinding algorithms.Nos últimos anos, novos algoritmos de Aprendizagem por Reforço foram desenvolvidos. Estes algoritmos usam Redes Neuronais Profundas para representar o conhecimento do agente. Após ultrapassarem marcos anteriores da Inteligência Artificial (AI), como o Xadrez e o Go, esses métodos de Aprendizagem Profunda por Reforço (DRL) foram capazes de superar o nível humano em jogos muito complexos como o Dota 2, onde é necessário um planeamento a longo prazo e nos quais equipas profissionais de jogadores humanos treinam diariamente para ganhar competições de desportos eletrónicos. Estes algoritmos começam do zero, não usam exemplos de comportamento humano e podem ser aplicados em vários domínios. Aprendendo pela experiência, novos e melhores comportamentos foram descobertos, indicando um grande potencial nestes algoritmos. No entanto, eles exigem muito poder computacional e tempo de treino. Os jogos de computador são utilizados numa disciplina de AI da Universidade de Aveiro como domínio de aplicação dos conhecimentos de AI adquiridos pelos alunos. Os alunos devem desenvolver agentes de software para esses jogos e tentar obter as melhores pontuações. O objetivo desta dissertação é desenvolver agentes usando as mais recentes técnicas de DRL e comparar o seu desempenho com o dos agentes desenvolvidos pelos alunos. Para começar, os agentes com DRL foram desenvolvidos para um jogo mais simples como o Jogo do Galo, onde várias opções de aprendizagem foram abordadas até ser criado um agente robusto capaz de jogar contra vários oponentes. Posteriormente, foram desenvolvidos agentes com DRL capazes de jogar a versão do Pac-Man utilizada na disciplina da Universidade de Aveiro, no ano letivo de 2018/19, através da realização de diversas experiências onde os parâmetros utilizados no processo de aprendizagem foram modificados de forma a obter melhores pontuações. O agente desenvolvido, que obteve a melhor pontuação, consegue jogar em todas as configurações de jogo utilizadas na avaliação da disciplina e alcançou o top 7 das classificações, entre mais de 50 agentes desenvolvidos por alunos que utilizaram estratégias embutidas no código com algoritmos de pesquisa.2021-05-17T09:01:25Z2021-02-22T00:00:00Z2021-02-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/31371engAraújo, Miguel Diogo Ferrazinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:00:33Zoai:ria.ua.pt:10773/31371Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:16.245535Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Machine learning agents for computer games |
title |
Machine learning agents for computer games |
spellingShingle |
Machine learning agents for computer games Araújo, Miguel Diogo Ferraz Machine learning Reinforcement learning Deep learning Deep reinforcement learning Agents Computer games |
title_short |
Machine learning agents for computer games |
title_full |
Machine learning agents for computer games |
title_fullStr |
Machine learning agents for computer games |
title_full_unstemmed |
Machine learning agents for computer games |
title_sort |
Machine learning agents for computer games |
author |
Araújo, Miguel Diogo Ferraz |
author_facet |
Araújo, Miguel Diogo Ferraz |
author_role |
author |
dc.contributor.author.fl_str_mv |
Araújo, Miguel Diogo Ferraz |
dc.subject.por.fl_str_mv |
Machine learning Reinforcement learning Deep learning Deep reinforcement learning Agents Computer games |
topic |
Machine learning Reinforcement learning Deep learning Deep reinforcement learning Agents Computer games |
description |
In recent years, new Reinforcement Learning algorithms have been developed. These algorithms use Deep Neural Networks to represent the agent’s knowledge. After surpassing previous Artificial Intelligence (AI) milestones, such as Chess and Go, these Deep Reinforcement Learning (DRL) methods were able to surpass the human level in very complex games like Dota 2, where long-term planning is required and in which professional teams of human players train daily to win e-sports competitions. These algorithms start from scratch, do not use examples of human behavior, and can be applied in various domains. Learning from experience, new and better behaviors were discovered, indicating a lot of potential in these algorithms. However, they require a lot of computational power and training time. Computer games are used in an AI course at the University of Aveiro as an application domain of the AI knowledge acquired by students. The students should develop software agents for these games and try to get the best scores. The objective of this dissertation is to develop agents using the latest DRL techniques and to compare their performance with the agents developed by students. To begin with, DRL agents were developed for a simpler game like Tic-Tac-Toe, where various learning options will be addressed until a robust agent capable of playing against multiple opponents is created. Then, DRL agents capable of playing the version of Pac-Man used in the University of Aveiro course, in the 2018/19 academic year, were developed through the realization of various experiments where the parameters used in the learning process were modified in order to obtain better scores. The developed agent, that obtained the best score, is able to play in all game configurations used in the evaluation of the course and reached the top 7 ranking, among more than 50 agents developed by students that used hard-coded strategies with pathfinding algorithms. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-17T09:01:25Z 2021-02-22T00:00:00Z 2021-02-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/31371 |
url |
http://hdl.handle.net/10773/31371 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137687757651968 |