Personalization of product rankings in e-commerce
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/71768 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
id |
RCAP_e743577eadcb0f5145c2134aa064d38b |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/71768 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Personalization of product rankings in e-commercePersonalizationRankingMachine LearningLearning to RankClusteringRecommendation systemMatrix FactorizationE-commerceDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsConsumers face a large number of choices while shopping online. Studies have shown, that they are already expecting to be targeted with content addressing their personal needs. In a web shop, products are presented as lists based on a selected category or as results of a product search. To support the users in their decision making, they can be provided with a personalized product ranking fitted to their current interests. In this piece of work, three levels of personalized product rankings are proposed: explicit personalization, cluster-based personalization and individualization. To estimate the potential effect of the personalization and its required effort, two prototypes for the second and third level are developed and evaluated. The prototypes are based on a previously existing non-personalized ranking, which ranks the products in descending order according to a sales prediction. The cluster-based prototype enhances this product ranking by determining customer clusters beforehand using both situative and behavioural data. The individualized product rankings rely on the combination of the ranking with a recommendation system realized as a matrix factorization. In doing so, the concept of learning to rank is considered. By evaluating the cluster-based and individualized prototype on a sampled data set in comparison to the non-personalized ranking, it is shown that the created personalized rankings are in fact closer to the users’ needs. Furthermore, a subjective evaluation confirms that the cluster-based rankings can reflect the users’ interests in a better way.Neto, Miguel de Castro Simões FerreiraRUNKuka, Josefine Frederike2019-04-222024-04-22T00:00:00Z2019-04-22T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/71768TID:202252035enginfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:33:42Zoai:run.unl.pt:10362/71768Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:35:13.637661Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Personalization of product rankings in e-commerce |
title |
Personalization of product rankings in e-commerce |
spellingShingle |
Personalization of product rankings in e-commerce Kuka, Josefine Frederike Personalization Ranking Machine Learning Learning to Rank Clustering Recommendation system Matrix Factorization E-commerce |
title_short |
Personalization of product rankings in e-commerce |
title_full |
Personalization of product rankings in e-commerce |
title_fullStr |
Personalization of product rankings in e-commerce |
title_full_unstemmed |
Personalization of product rankings in e-commerce |
title_sort |
Personalization of product rankings in e-commerce |
author |
Kuka, Josefine Frederike |
author_facet |
Kuka, Josefine Frederike |
author_role |
author |
dc.contributor.none.fl_str_mv |
Neto, Miguel de Castro Simões Ferreira RUN |
dc.contributor.author.fl_str_mv |
Kuka, Josefine Frederike |
dc.subject.por.fl_str_mv |
Personalization Ranking Machine Learning Learning to Rank Clustering Recommendation system Matrix Factorization E-commerce |
topic |
Personalization Ranking Machine Learning Learning to Rank Clustering Recommendation system Matrix Factorization E-commerce |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04-22 2019-04-22T00:00:00Z 2024-04-22T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/71768 TID:202252035 |
url |
http://hdl.handle.net/10362/71768 |
identifier_str_mv |
TID:202252035 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137973304819713 |