A machine learning framework towards bank telemarketing prediction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.21/14762 |
Resumo: | Artigo publicado em revista científica internacional |
id |
RCAP_e77027033bc51f1dced0ec1876efdec9 |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/14762 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A machine learning framework towards bank telemarketing predictionArtificial intelligenceData miningHeterogeneous dataMachine learningPerformance optimisationPredictive modellingTargeted marketingBank telemarketingArtigo publicado em revista científica internacionalThe use of machine learning (ML) methods has been widely discussed for over a decade. The search for the optimal model is still a challenge that researchers seek to address. Despite advances in current work that surpass the limitations of previous ones, research still faces new challenges in every field. For the automatic targeting of customers in a banking telemarketing campaign, the use of ML-based approaches in previous work has not been able to show transparency in the processing of heterogeneous data, achieve optimal performance or use minimal resources. In this paper, we introduce a class membership-based (CMB) classifier which is a transparent approach well adapted to heterogeneous data that exploits nominal variables in the decision function. These dummy variables are often either suppressed or coded in an arbitrary way in most works without really evaluating their impact on the final performance of the models. In many cases, their coding either favours or disfavours the learning model performance without necessarily reflecting reality, which leads to over-fitting or decreased performance. In this work, we applied the CMB approach to data from a bank telemarketing campaign to build an optimal model for predicting potential customers before launching a campaign. The results obtained suggest that the CMB approach can predict the success of future prospecting more accurately than previous work. Furthermore, in addition to its better performance in terms of accuracy (97.3%), the model also gives a very close score for the AUC (95.9%), showing its stability, which would be very unfavourable to over-fitting.MDPIRCIPLKOUMETIO TEKOUABOU, Stéphane CédricGherghina, Ştefan CristianTOULNI, HamzaMata, PedroMata, Mário NunoMoleiro Martins, José2022-06-29T11:07:28Z2022-062022-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/14762engTékouabou, S. C. K., Gherghina, Ş. C., Toulni, H., Neves Mata, P., Mata, M. N., & Martins, J. M. (2022). A Machine Learning Framework towards Bank Telemarketing Prediction. Journal of Risk and Financial Management, 15(6), 269. https://doi.org/10.3390/jrfm15060269https://doi.org/10.3390/jrfm15060269info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T10:11:22Zoai:repositorio.ipl.pt:10400.21/14762Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:22:30.751304Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A machine learning framework towards bank telemarketing prediction |
title |
A machine learning framework towards bank telemarketing prediction |
spellingShingle |
A machine learning framework towards bank telemarketing prediction KOUMETIO TEKOUABOU, Stéphane Cédric Artificial intelligence Data mining Heterogeneous data Machine learning Performance optimisation Predictive modelling Targeted marketing Bank telemarketing |
title_short |
A machine learning framework towards bank telemarketing prediction |
title_full |
A machine learning framework towards bank telemarketing prediction |
title_fullStr |
A machine learning framework towards bank telemarketing prediction |
title_full_unstemmed |
A machine learning framework towards bank telemarketing prediction |
title_sort |
A machine learning framework towards bank telemarketing prediction |
author |
KOUMETIO TEKOUABOU, Stéphane Cédric |
author_facet |
KOUMETIO TEKOUABOU, Stéphane Cédric Gherghina, Ştefan Cristian TOULNI, Hamza Mata, Pedro Mata, Mário Nuno Moleiro Martins, José |
author_role |
author |
author2 |
Gherghina, Ştefan Cristian TOULNI, Hamza Mata, Pedro Mata, Mário Nuno Moleiro Martins, José |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
KOUMETIO TEKOUABOU, Stéphane Cédric Gherghina, Ştefan Cristian TOULNI, Hamza Mata, Pedro Mata, Mário Nuno Moleiro Martins, José |
dc.subject.por.fl_str_mv |
Artificial intelligence Data mining Heterogeneous data Machine learning Performance optimisation Predictive modelling Targeted marketing Bank telemarketing |
topic |
Artificial intelligence Data mining Heterogeneous data Machine learning Performance optimisation Predictive modelling Targeted marketing Bank telemarketing |
description |
Artigo publicado em revista científica internacional |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-29T11:07:28Z 2022-06 2022-06-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/14762 |
url |
http://hdl.handle.net/10400.21/14762 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Tékouabou, S. C. K., Gherghina, Ş. C., Toulni, H., Neves Mata, P., Mata, M. N., & Martins, J. M. (2022). A Machine Learning Framework towards Bank Telemarketing Prediction. Journal of Risk and Financial Management, 15(6), 269. https://doi.org/10.3390/jrfm15060269 https://doi.org/10.3390/jrfm15060269 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133497483329536 |