Dynamics of transposable elements in spinal muscular atrophy cell models

Detalhes bibliográficos
Autor(a) principal: Pinto, Albano Ribeiro
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10348/10457
Resumo: Transposable elements (TEs) are interspersed repetitive DNA sequences with the ability to mobilize in the genome. TEs can be divided into two major classes based on their mechanism of transposition. Class 1 elements, also known as retrotransposons and class 2 elements, known as DNA transposons. The human genome is highly enriched in class 1 elements, specifically LINEs and SINEs, with LINE-1 (L1) and Alu retrotransposons comprising up to 21% and 14% of the human genome, respectively. It is believed that TEs had and continue to have significant impacts on mammalian genome evolution and in gene regulation. The recent development of improved tools for evaluating TE derived sequences in genomic studies has enabled an increasing attention to the contribution of TEs to human development and also their role in disease. Spinal Muscular Atrophy (SMA) is an autosomal recessive neuromuscular disease mainly caused by mutations, especially deletions, in the survival motor neuron (SMN1) gene. SMN1 is highly enriched in TEs, with Alu and L1 elements being inserted in key gene regions. The main aims of this thesis were to perceive TE dynamics in SMN1, to understand their role in gene regulation and to assess their potential role on SMA onset. A comprehensive analysis of TEs insertions in the SMN1 locus of SMA carriers, SMA patients and healthy/control individuals was made in order to try to establish a link between these elements and SMA onset. Our results showed that SMN1 has a complex regulatory network, where TEs play an important role. We found an Alu retrotransposon insertion in the promoter region and one L1 element in the 3’UTR region that likely play an important role as an alternative promoter and as an alternative terminator to the gene, respectively. Additionally, the several Alu repeats inserted in the gene introns influence splicing, giving rise to alternative splicing events that lead to RNA circularization and the birth of new alternative exons. These Alu repeats present throughout the gene are also prone to recombination events that can lead to SMN1 exons deletions, that ultimately lead to SMA. The many good and bad implications associated with the presence of TEs inside SMN1 make this genomic region a prime location for grasping TEs implications for genomic evolution but also their role in human genomic disease. The work developed in this thesis allowed us to see TEs as more than genomic parasites and to perceive them as double-edge swords capable of being crucial for genome and transcriptome evolution but also contributors to genomic instability and to human disease.
id RCAP_e8602d5de03831009fb10a411b427413
oai_identifier_str oai:repositorio.utad.pt:10348/10457
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Dynamics of transposable elements in spinal muscular atrophy cell modelsGenome dynamicsTransposable elementsTransposable elements (TEs) are interspersed repetitive DNA sequences with the ability to mobilize in the genome. TEs can be divided into two major classes based on their mechanism of transposition. Class 1 elements, also known as retrotransposons and class 2 elements, known as DNA transposons. The human genome is highly enriched in class 1 elements, specifically LINEs and SINEs, with LINE-1 (L1) and Alu retrotransposons comprising up to 21% and 14% of the human genome, respectively. It is believed that TEs had and continue to have significant impacts on mammalian genome evolution and in gene regulation. The recent development of improved tools for evaluating TE derived sequences in genomic studies has enabled an increasing attention to the contribution of TEs to human development and also their role in disease. Spinal Muscular Atrophy (SMA) is an autosomal recessive neuromuscular disease mainly caused by mutations, especially deletions, in the survival motor neuron (SMN1) gene. SMN1 is highly enriched in TEs, with Alu and L1 elements being inserted in key gene regions. The main aims of this thesis were to perceive TE dynamics in SMN1, to understand their role in gene regulation and to assess their potential role on SMA onset. A comprehensive analysis of TEs insertions in the SMN1 locus of SMA carriers, SMA patients and healthy/control individuals was made in order to try to establish a link between these elements and SMA onset. Our results showed that SMN1 has a complex regulatory network, where TEs play an important role. We found an Alu retrotransposon insertion in the promoter region and one L1 element in the 3’UTR region that likely play an important role as an alternative promoter and as an alternative terminator to the gene, respectively. Additionally, the several Alu repeats inserted in the gene introns influence splicing, giving rise to alternative splicing events that lead to RNA circularization and the birth of new alternative exons. These Alu repeats present throughout the gene are also prone to recombination events that can lead to SMN1 exons deletions, that ultimately lead to SMA. The many good and bad implications associated with the presence of TEs inside SMN1 make this genomic region a prime location for grasping TEs implications for genomic evolution but also their role in human genomic disease. The work developed in this thesis allowed us to see TEs as more than genomic parasites and to perceive them as double-edge swords capable of being crucial for genome and transcriptome evolution but also contributors to genomic instability and to human disease.Elementos transponíveis são sequências de DNA repetitivo com capacidade de mobilização no genoma. Podem ser divididos em duas classes com base no seu mecanismo de transposição. A classe 1, também conhecida por retrotransposões e a classe 2, conhecida como transposões de DNA. O genoma humano é enriquecido em retrotransposões, especificamente LINEs e SINEs, com os retrotransposões LINE-1 (L1) e os elementos Alu a representarem até 21% e 14% do genoma humano, respetivamente. Acredita-se que os elementos transponíveis tiveram e ainda mantêm um papel importante na evolução do genoma dos mamíferos e na regulação dos seus genes. O desenvolvimento de novas ferramentas para a avaliação de sequências derivadas de elementos transponíveis em estudos genómicos, tem permitido uma melhor perceção da contribuição destes elementos para o desenvolvimento humano mas também do seu papel no surgimento de doenças. A Atrofia Muscular Espinhal (SMA) é uma doença neuromuscular autossómica recessiva causada principalmente por mutações, especialmente deleções, no gene survival motor neuron (SMN1). Este gene é enriquecido em elementos transponíveis, inclusive com inserções de retrotransposões Alu e L1 em regiões críticas. Os principais objetivos desta tese foram tentar perceber a dinâmica dos elementos transponíveis presentes no gene SMN1, entender o papel destes elementos na regulação do gene SMN1 e por fim avaliar o seu potencial envolvimento na Atrofia Muscular Espinhal. Uma análise detalhada das inserções de elementos transponíveis no gene SMN1 de portadores de SMA, pacientes com SMA e indivíduos normais/controlo foi feita com o objetivo de tentar estabelecer uma ligação entre estes elementos e esta doença. Os resultados obtidos mostraram que o gene SMN1 possui uma complexa rede regulatória, onde os elementos transponíveis desempenham um papel importante. Foi encontrada uma inserção de um retrotransposão Alu na região do promotor e uma inserção de um elemento da família L1 na região 3'UTR do gene, que provavelmente desempenham um papel importante como promotor alternativo e como terminador alternativo para o gene, respetivamente. Além disso, os vários elementos Alu inseridos nos intrões do gene tem a capacidade de influenciar o splicing, levando a eventos de splicing alternativo onde poderá ocorrer a circularização do RNA e/ou o nascimento de novos exões alternativos. A presença destas repetições da família Alu em todo o gene leva a que o gene SMN1 seja propenso à ocorrência de deleções causadas por eventos de recombinação entre os elementos Alu que podem levar a deleções de exões do gene, causando Atrofia Muscular Espinhal. Os diversos impactos positivos e negativos associados à presença de elementos transponíveis na sequência do gene SMN1 tornam esta região genómica extremamente interessante para a compreensão das implicações destes elementos para a evolução do genoma, e também permite melhor compreender o seu potencial papel no aparecimento de doenças genéticas no Homem. O trabalho desenvolvido nesta tese permitiu-nos ver os elementos transponíveis como mais do que apenas parasitas genómicos e percebê-los como elementos genómicos capazes de desempenharem um papel crucial na evolução do genoma e do transcriptoma, mas simultaneamente como causadores de instabilidade genómica, tantas vezes associada a doença no Homem.2021-06-16T10:44:45Z2021-04-27T00:00:00Z2021-04-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/10348/10457engmetadata only accessinfo:eu-repo/semantics/openAccessPinto, Albano Ribeiroreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-24T03:53:01Zoai:repositorio.utad.pt:10348/10457Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-03-24T03:53:01Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Dynamics of transposable elements in spinal muscular atrophy cell models
title Dynamics of transposable elements in spinal muscular atrophy cell models
spellingShingle Dynamics of transposable elements in spinal muscular atrophy cell models
Pinto, Albano Ribeiro
Genome dynamics
Transposable elements
title_short Dynamics of transposable elements in spinal muscular atrophy cell models
title_full Dynamics of transposable elements in spinal muscular atrophy cell models
title_fullStr Dynamics of transposable elements in spinal muscular atrophy cell models
title_full_unstemmed Dynamics of transposable elements in spinal muscular atrophy cell models
title_sort Dynamics of transposable elements in spinal muscular atrophy cell models
author Pinto, Albano Ribeiro
author_facet Pinto, Albano Ribeiro
author_role author
dc.contributor.author.fl_str_mv Pinto, Albano Ribeiro
dc.subject.por.fl_str_mv Genome dynamics
Transposable elements
topic Genome dynamics
Transposable elements
description Transposable elements (TEs) are interspersed repetitive DNA sequences with the ability to mobilize in the genome. TEs can be divided into two major classes based on their mechanism of transposition. Class 1 elements, also known as retrotransposons and class 2 elements, known as DNA transposons. The human genome is highly enriched in class 1 elements, specifically LINEs and SINEs, with LINE-1 (L1) and Alu retrotransposons comprising up to 21% and 14% of the human genome, respectively. It is believed that TEs had and continue to have significant impacts on mammalian genome evolution and in gene regulation. The recent development of improved tools for evaluating TE derived sequences in genomic studies has enabled an increasing attention to the contribution of TEs to human development and also their role in disease. Spinal Muscular Atrophy (SMA) is an autosomal recessive neuromuscular disease mainly caused by mutations, especially deletions, in the survival motor neuron (SMN1) gene. SMN1 is highly enriched in TEs, with Alu and L1 elements being inserted in key gene regions. The main aims of this thesis were to perceive TE dynamics in SMN1, to understand their role in gene regulation and to assess their potential role on SMA onset. A comprehensive analysis of TEs insertions in the SMN1 locus of SMA carriers, SMA patients and healthy/control individuals was made in order to try to establish a link between these elements and SMA onset. Our results showed that SMN1 has a complex regulatory network, where TEs play an important role. We found an Alu retrotransposon insertion in the promoter region and one L1 element in the 3’UTR region that likely play an important role as an alternative promoter and as an alternative terminator to the gene, respectively. Additionally, the several Alu repeats inserted in the gene introns influence splicing, giving rise to alternative splicing events that lead to RNA circularization and the birth of new alternative exons. These Alu repeats present throughout the gene are also prone to recombination events that can lead to SMN1 exons deletions, that ultimately lead to SMA. The many good and bad implications associated with the presence of TEs inside SMN1 make this genomic region a prime location for grasping TEs implications for genomic evolution but also their role in human genomic disease. The work developed in this thesis allowed us to see TEs as more than genomic parasites and to perceive them as double-edge swords capable of being crucial for genome and transcriptome evolution but also contributors to genomic instability and to human disease.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-16T10:44:45Z
2021-04-27T00:00:00Z
2021-04-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10348/10457
url http://hdl.handle.net/10348/10457
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817543108360929280