Development of micro/nano cellulose-based biodegradable materials using 3D computational simulation

Detalhes bibliográficos
Autor(a) principal: Mendes, José António Silva
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/14068
Resumo: The dramatic increase in single-use plastic (SUP) made from fossil-derived materials that are not biodegradable has contributed to the emergence of pollution as an environmental issue. Concerns regarding the environment and the development of biodegradable products from renewable sources, specifically the development of sustainable packaging using cellulose fibers from different plant sources, represent a multidisciplinary challenge for this investigation. Fibers from bleached Eucalyptus globulus, unbleached Picea abies, and hemp fibers produced in the laboratory were selected for this study. The fibers were evaluated for their morphology and biometry, and structures were produced in the laboratory with different mixtures and mechanical treatments at the PFI. Its structural, mechanical, optical, and chemical properties were experimentally characterized using methodologies and following the respective ISO standards. The fibers and structures formed by them were simulated using 3D computer simulation models. Composting was used to conduct biodegradability tests using a methodology developed to be used both in the laboratory and later in the sector's industries, having collected data for this purpose. The comparison of the reference fibers revealed that softwood fibers are approximately three times longer than hardwood fibers. In terms of width, softwood fibers are about twice as wide as hardwood fibers. In general, the increase in refining resulted in a rise in fibrillation and fine elements within the sample. As a result, the handsheets' thickness was reduced by 62% (HW) and 60% (SW) compared to handsheets made with unrefined fibers. Higher compaction and increased interfiber bonds contribute to a more cohesive and reinforced structure, as evidenced by the exponential increase in refined structures' tensile index and elastic modulus. The characteristics of hemp fibers were similar to Picea abies fibers but a little longer. The tensile index increased by 62,33% and the elastic modulus by 40,50% in an optimized combination of hemp fiber and eucalyptus fibers. Furthermore, biodegradation studies evaluated the effect of composting after 28 and 60 days, indicating that the refined structures biodegraded more quickly than the remaining samples since their mass loss values were the highest. An optimized combination of a fibrous structure containing micro and nanoscale cellulose fibers produced a porous 3D matrix that could be used for innovative packaging. In this network, the microscale cellulose fibers provide resistance and stability. In contrast, the nanoscale cellulose fibers create a structure with more interfiber bonds, which may provide resistance and stability properties advantageous for the intended functions. The porous structural units formed by cellulose fibers in micro and nanoscale were represented by 3D computational simulation, considering the input values of the fiber characterization and the output values. Finally, the proposed experimental and computational methodology proved an excellent tool for developing and optimizing 3D structures for obtaining laboratory prototypes that could be used in more sustainable food packaging.
id RCAP_e8b4ec4c2aa2aa4397e68b87675b4283
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/14068
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Development of micro/nano cellulose-based biodegradable materials using 3D computational simulationBiodegradaçãoCelulose Micro/Nano FibriladaEmbalagens MoldadasMateriais à Base de CeluloseOtimizaçãoSimulação ComputacionalDomínio/Área Científica::Engenharia e Tecnologia::BiotecnologiaThe dramatic increase in single-use plastic (SUP) made from fossil-derived materials that are not biodegradable has contributed to the emergence of pollution as an environmental issue. Concerns regarding the environment and the development of biodegradable products from renewable sources, specifically the development of sustainable packaging using cellulose fibers from different plant sources, represent a multidisciplinary challenge for this investigation. Fibers from bleached Eucalyptus globulus, unbleached Picea abies, and hemp fibers produced in the laboratory were selected for this study. The fibers were evaluated for their morphology and biometry, and structures were produced in the laboratory with different mixtures and mechanical treatments at the PFI. Its structural, mechanical, optical, and chemical properties were experimentally characterized using methodologies and following the respective ISO standards. The fibers and structures formed by them were simulated using 3D computer simulation models. Composting was used to conduct biodegradability tests using a methodology developed to be used both in the laboratory and later in the sector's industries, having collected data for this purpose. The comparison of the reference fibers revealed that softwood fibers are approximately three times longer than hardwood fibers. In terms of width, softwood fibers are about twice as wide as hardwood fibers. In general, the increase in refining resulted in a rise in fibrillation and fine elements within the sample. As a result, the handsheets' thickness was reduced by 62% (HW) and 60% (SW) compared to handsheets made with unrefined fibers. Higher compaction and increased interfiber bonds contribute to a more cohesive and reinforced structure, as evidenced by the exponential increase in refined structures' tensile index and elastic modulus. The characteristics of hemp fibers were similar to Picea abies fibers but a little longer. The tensile index increased by 62,33% and the elastic modulus by 40,50% in an optimized combination of hemp fiber and eucalyptus fibers. Furthermore, biodegradation studies evaluated the effect of composting after 28 and 60 days, indicating that the refined structures biodegraded more quickly than the remaining samples since their mass loss values were the highest. An optimized combination of a fibrous structure containing micro and nanoscale cellulose fibers produced a porous 3D matrix that could be used for innovative packaging. In this network, the microscale cellulose fibers provide resistance and stability. In contrast, the nanoscale cellulose fibers create a structure with more interfiber bonds, which may provide resistance and stability properties advantageous for the intended functions. The porous structural units formed by cellulose fibers in micro and nanoscale were represented by 3D computational simulation, considering the input values of the fiber characterization and the output values. Finally, the proposed experimental and computational methodology proved an excellent tool for developing and optimizing 3D structures for obtaining laboratory prototypes that could be used in more sustainable food packaging.O aumento drástico de plásticos de uso único (PUU) produzidos a partir matérias de origem fóssil não biodegradáveis contribuiu para o crescimento da poluição constituindo um problema ambiental. As preocupações com o meio ambiente e o desenvolvimento de produtos biodegradáveis a partir de fontes renováveis, especificamente o desenvolvimento de embalagens sustentáveis utilizando fibras de celulose de diferentes fontes vegetais, representam um desafio multidisciplinar no qual esta investigação está inserida. Selecionaram-se para este estudo fibras de Eucalyptus globulus branqueado, Picea abies não branqueado e fibras de cânhamo produzidas em laboratório. As fibras foram avaliadas quanto à sua morfologia e biometria, e foram produzidas estruturas laboratorialmente com diversas misturas e tratamentos mecânicos no PFI. As suas propriedades estruturais, mecânicas, óticas e químicas foram caracterizadas experimentalmente, utilizando metodologias e seguindo as respetivas normas ISO. As fibras e estruturas por elas formadas foram simuladas utilizando modelos de simulação computacional em 3D. A compostagem foi avaliada e utilizada para a realização testes de biodegradabilidade através de uma metodologia desenvolvida para ser utilizada tanto em laboratório, como nas indústrias do setor, tendo sido recolhidos dados para o efeito. A comparação das fibras de referência revelou que as fibras de softwood são aproximadamente três vezes mais longas que as fibras de hardwood. Em termos de largura, as fibras de softwood são cerca de duas vezes mais largas que as fibras de hardwood. No geral, o aumento da refinação resultou num aumento na fibrilação e nos elementos finos da amostra. Como resultado, a espessura dos handsheets foi reduzida em 62% (HW) e 60% (SW) quando comparadas às folhas feitas com fibras não refinadas. Uma maior compactação e maiores ligações entre fibras contribuíram para uma estrutura mais coesa e reforçada, como evidenciado pelo aumento exponencial no índice de tração e no módulo de elasticidade das estruturas refinadas. As características das fibras de cânhamo foram semelhantes às fibras de Picea abies, mas um pouco mais longas. O índice de tração aumentou em 62,33% e o módulo de elasticidade em 40,50% numa combinação otimizada de fibra de cânhamo com fibras de eucalipto. Além disso, os estudos de biodegradação avaliaram o efeito da compostagem após 28 e 60 dias, indicando que as estruturas refinadas se biodegradaram mais rapidamente do que as restantes amostras, uma vez que os seus valores de perda de massa foram superiores Uma combinação otimizada na estrutura fibrosa contendo fibras de celulose em micro e nanoescala permitiu produzir uma matriz 3D porosa que poderá ser usada em embalagens inovadoras. Nesta rede, as fibras de celulose em microescala proporcionam resistência e estabilidade. Em contraste, as fibras de celulose em nanoescala criam uma estrutura com mais ligações interfibras, o que pode favorecer propriedades de resistência e estabilidade trazendo vantagens para as funções pretendidas. As unidades estruturais porosas formadas por fibras de celulose em micro e nanoescala foram representadas por simulação computacional 3D, considerando os valores de entrada da caracterização das fibras. Por fim, a metodologia experimental e computacional proposta mostrou-se uma excelente ferramenta no desenvolvimento e otimização de estruturas 3D para obtenção de protótipos laboratoriais que poderão ser utilizados em embalagens de alimentos de uma forma mais sustentável.Curto, Joana Maria RodriguesuBibliorumMendes, José António Silva2023-11-232023-10-092025-10-09T00:00:00Z2023-11-23T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/14068TID:203460154enginfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-17T03:49:04Zoai:ubibliorum.ubi.pt:10400.6/14068Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:45:09.107676Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Development of micro/nano cellulose-based biodegradable materials using 3D computational simulation
title Development of micro/nano cellulose-based biodegradable materials using 3D computational simulation
spellingShingle Development of micro/nano cellulose-based biodegradable materials using 3D computational simulation
Mendes, José António Silva
Biodegradação
Celulose Micro/Nano Fibrilada
Embalagens Moldadas
Materiais à Base de Celulose
Otimização
Simulação Computacional
Domínio/Área Científica::Engenharia e Tecnologia::Biotecnologia
title_short Development of micro/nano cellulose-based biodegradable materials using 3D computational simulation
title_full Development of micro/nano cellulose-based biodegradable materials using 3D computational simulation
title_fullStr Development of micro/nano cellulose-based biodegradable materials using 3D computational simulation
title_full_unstemmed Development of micro/nano cellulose-based biodegradable materials using 3D computational simulation
title_sort Development of micro/nano cellulose-based biodegradable materials using 3D computational simulation
author Mendes, José António Silva
author_facet Mendes, José António Silva
author_role author
dc.contributor.none.fl_str_mv Curto, Joana Maria Rodrigues
uBibliorum
dc.contributor.author.fl_str_mv Mendes, José António Silva
dc.subject.por.fl_str_mv Biodegradação
Celulose Micro/Nano Fibrilada
Embalagens Moldadas
Materiais à Base de Celulose
Otimização
Simulação Computacional
Domínio/Área Científica::Engenharia e Tecnologia::Biotecnologia
topic Biodegradação
Celulose Micro/Nano Fibrilada
Embalagens Moldadas
Materiais à Base de Celulose
Otimização
Simulação Computacional
Domínio/Área Científica::Engenharia e Tecnologia::Biotecnologia
description The dramatic increase in single-use plastic (SUP) made from fossil-derived materials that are not biodegradable has contributed to the emergence of pollution as an environmental issue. Concerns regarding the environment and the development of biodegradable products from renewable sources, specifically the development of sustainable packaging using cellulose fibers from different plant sources, represent a multidisciplinary challenge for this investigation. Fibers from bleached Eucalyptus globulus, unbleached Picea abies, and hemp fibers produced in the laboratory were selected for this study. The fibers were evaluated for their morphology and biometry, and structures were produced in the laboratory with different mixtures and mechanical treatments at the PFI. Its structural, mechanical, optical, and chemical properties were experimentally characterized using methodologies and following the respective ISO standards. The fibers and structures formed by them were simulated using 3D computer simulation models. Composting was used to conduct biodegradability tests using a methodology developed to be used both in the laboratory and later in the sector's industries, having collected data for this purpose. The comparison of the reference fibers revealed that softwood fibers are approximately three times longer than hardwood fibers. In terms of width, softwood fibers are about twice as wide as hardwood fibers. In general, the increase in refining resulted in a rise in fibrillation and fine elements within the sample. As a result, the handsheets' thickness was reduced by 62% (HW) and 60% (SW) compared to handsheets made with unrefined fibers. Higher compaction and increased interfiber bonds contribute to a more cohesive and reinforced structure, as evidenced by the exponential increase in refined structures' tensile index and elastic modulus. The characteristics of hemp fibers were similar to Picea abies fibers but a little longer. The tensile index increased by 62,33% and the elastic modulus by 40,50% in an optimized combination of hemp fiber and eucalyptus fibers. Furthermore, biodegradation studies evaluated the effect of composting after 28 and 60 days, indicating that the refined structures biodegraded more quickly than the remaining samples since their mass loss values were the highest. An optimized combination of a fibrous structure containing micro and nanoscale cellulose fibers produced a porous 3D matrix that could be used for innovative packaging. In this network, the microscale cellulose fibers provide resistance and stability. In contrast, the nanoscale cellulose fibers create a structure with more interfiber bonds, which may provide resistance and stability properties advantageous for the intended functions. The porous structural units formed by cellulose fibers in micro and nanoscale were represented by 3D computational simulation, considering the input values of the fiber characterization and the output values. Finally, the proposed experimental and computational methodology proved an excellent tool for developing and optimizing 3D structures for obtaining laboratory prototypes that could be used in more sustainable food packaging.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-23
2023-10-09
2023-11-23T00:00:00Z
2025-10-09T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/14068
TID:203460154
url http://hdl.handle.net/10400.6/14068
identifier_str_mv TID:203460154
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136947259572224