Water use and response of a dry-farmed olive orchard recently converted to irrigation

Detalhes bibliográficos
Autor(a) principal: Santos, Francisco Lúcio
Data de Publicação: 2007
Outros Autores: Valverde, Pedro, Ramos, Alice, Reis, João, Castanheira, Nádia
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/6050
https://doi.org/10.1016/j.biosystemseng.2007.03.027
Resumo: Experimental results obtained in Southern Portugal from a dry-farmed mature olive tree orchard recently converted to drip irrigation are described. Water use and response to two irrigation management practices by olive trees was monitored with sap flow compensation heat pulse sensors, ‘Watermark’ granular matrix block sensors and a capacitance probe. The 80-plus-year-old mature olive tree orchard planted on a 12 m by 12 m spacing layout was converted in 2005 from dry-farming to drip irrigation and subjected to two water treatments: trees irrigated daily to supply for crop water demand and trees irrigated before-flowering, during pit-hardening and before crop-harvesting. Sap flow sensors were implanted in sample trees at three different positions around the trunk and measurements were taken at 30 min intervals during 4 months, from April to mid-August of 2005. Tree transpiration rates were estimated as average of sap flow rates. When trees were fully irrigated, the observed differences in daily sap flow rate amplitude were explained by the natural trees difference in canopy cover, plant height and conductance of water vapour sites. However, when deficit irrigation was prescribed and, when the trees stopped being irrigated, they gradually lost their ability to adequately respond to the evaporative demands of the day, showing smaller variations in amplitudes sap flow. After irrigation ceased in May 15, transpiration rate gradually decreased from its maximum of 7 l h−1, when trees were fully irrigated and soil water content was near to field capacity, to values of less than 3 l h−1 by July 3 as the soil water content gradually acted as the transpiration limiting factor. Transpiration rates recovered after irrigation was re-introduced on July 4. Although low in the non-irrigation period, transpiration rates never dropped to zero and stayed between 37 and 50 l d−1 from May 27 to June 9, as trees were able to extract soil water in the absence of irrigation. Olive trees maintained transpiration to levels as high as 50 l d−1 suggesting that long after irrigation is suppressed, a considerable amount of water held in the soil is made available to the trees. Differences in evapotranspiration and transpiration rates during the same period also indicated that olive trees, making use of the extensive root system developed in the 12 m by 12 m tree spacing, were able to extract soil water and maintain transpiration levels as high as 50 l d−1, while soil water balance indicated tree evapotranspiration rates close to zero. This particular ability of dry-farmed olive trees to remove water held in the soil under adverse conditions of very low soil moisture and uncertainties associated with the real volume of soil effectively explored by the root system, make profile probe sensors, regardless of their accuracy, unsuitable for control of water uptake and management of dry-farmed olive orchards recently converted to irrigation. Likewise, watermark sensors, able to capture the variations of high soil water, failed to provide meaningfully values below 0.28 cm3 cm−1. Both sensors should be used with care in managing irrigation of olive tree orchards and, rather than relying on soil moisture status, monitoring tree water-use and response with the compensation heat-pulse method seems a more appropriate approach
id RCAP_e91fcdb712e0499a74ebd40a5b603dea
oai_identifier_str oai:dspace.uevora.pt:10174/6050
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Water use and response of a dry-farmed olive orchard recently converted to irrigationwater useirrigationtranspirationolive orchardExperimental results obtained in Southern Portugal from a dry-farmed mature olive tree orchard recently converted to drip irrigation are described. Water use and response to two irrigation management practices by olive trees was monitored with sap flow compensation heat pulse sensors, ‘Watermark’ granular matrix block sensors and a capacitance probe. The 80-plus-year-old mature olive tree orchard planted on a 12 m by 12 m spacing layout was converted in 2005 from dry-farming to drip irrigation and subjected to two water treatments: trees irrigated daily to supply for crop water demand and trees irrigated before-flowering, during pit-hardening and before crop-harvesting. Sap flow sensors were implanted in sample trees at three different positions around the trunk and measurements were taken at 30 min intervals during 4 months, from April to mid-August of 2005. Tree transpiration rates were estimated as average of sap flow rates. When trees were fully irrigated, the observed differences in daily sap flow rate amplitude were explained by the natural trees difference in canopy cover, plant height and conductance of water vapour sites. However, when deficit irrigation was prescribed and, when the trees stopped being irrigated, they gradually lost their ability to adequately respond to the evaporative demands of the day, showing smaller variations in amplitudes sap flow. After irrigation ceased in May 15, transpiration rate gradually decreased from its maximum of 7 l h−1, when trees were fully irrigated and soil water content was near to field capacity, to values of less than 3 l h−1 by July 3 as the soil water content gradually acted as the transpiration limiting factor. Transpiration rates recovered after irrigation was re-introduced on July 4. Although low in the non-irrigation period, transpiration rates never dropped to zero and stayed between 37 and 50 l d−1 from May 27 to June 9, as trees were able to extract soil water in the absence of irrigation. Olive trees maintained transpiration to levels as high as 50 l d−1 suggesting that long after irrigation is suppressed, a considerable amount of water held in the soil is made available to the trees. Differences in evapotranspiration and transpiration rates during the same period also indicated that olive trees, making use of the extensive root system developed in the 12 m by 12 m tree spacing, were able to extract soil water and maintain transpiration levels as high as 50 l d−1, while soil water balance indicated tree evapotranspiration rates close to zero. This particular ability of dry-farmed olive trees to remove water held in the soil under adverse conditions of very low soil moisture and uncertainties associated with the real volume of soil effectively explored by the root system, make profile probe sensors, regardless of their accuracy, unsuitable for control of water uptake and management of dry-farmed olive orchards recently converted to irrigation. Likewise, watermark sensors, able to capture the variations of high soil water, failed to provide meaningfully values below 0.28 cm3 cm−1. Both sensors should be used with care in managing irrigation of olive tree orchards and, rather than relying on soil moisture status, monitoring tree water-use and response with the compensation heat-pulse method seems a more appropriate approachBiosystems Engineering2012-11-27T18:26:27Z2012-11-272007-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/6050http://hdl.handle.net/10174/6050https://doi.org/10.1016/j.biosystemseng.2007.03.027engBiosystems Engineering 98: 102-114ICAAMfls@uevora.ptpedrovalv@gmail.comalice_f_ramos@yahoo.comndnadiacastanheira@gmail.com580Santos, Francisco LúcioValverde, PedroRamos, AliceReis, JoãoCastanheira, Nádiainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:44:59Zoai:dspace.uevora.pt:10174/6050Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:00:49.567615Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Water use and response of a dry-farmed olive orchard recently converted to irrigation
title Water use and response of a dry-farmed olive orchard recently converted to irrigation
spellingShingle Water use and response of a dry-farmed olive orchard recently converted to irrigation
Santos, Francisco Lúcio
water use
irrigation
transpiration
olive orchard
title_short Water use and response of a dry-farmed olive orchard recently converted to irrigation
title_full Water use and response of a dry-farmed olive orchard recently converted to irrigation
title_fullStr Water use and response of a dry-farmed olive orchard recently converted to irrigation
title_full_unstemmed Water use and response of a dry-farmed olive orchard recently converted to irrigation
title_sort Water use and response of a dry-farmed olive orchard recently converted to irrigation
author Santos, Francisco Lúcio
author_facet Santos, Francisco Lúcio
Valverde, Pedro
Ramos, Alice
Reis, João
Castanheira, Nádia
author_role author
author2 Valverde, Pedro
Ramos, Alice
Reis, João
Castanheira, Nádia
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Santos, Francisco Lúcio
Valverde, Pedro
Ramos, Alice
Reis, João
Castanheira, Nádia
dc.subject.por.fl_str_mv water use
irrigation
transpiration
olive orchard
topic water use
irrigation
transpiration
olive orchard
description Experimental results obtained in Southern Portugal from a dry-farmed mature olive tree orchard recently converted to drip irrigation are described. Water use and response to two irrigation management practices by olive trees was monitored with sap flow compensation heat pulse sensors, ‘Watermark’ granular matrix block sensors and a capacitance probe. The 80-plus-year-old mature olive tree orchard planted on a 12 m by 12 m spacing layout was converted in 2005 from dry-farming to drip irrigation and subjected to two water treatments: trees irrigated daily to supply for crop water demand and trees irrigated before-flowering, during pit-hardening and before crop-harvesting. Sap flow sensors were implanted in sample trees at three different positions around the trunk and measurements were taken at 30 min intervals during 4 months, from April to mid-August of 2005. Tree transpiration rates were estimated as average of sap flow rates. When trees were fully irrigated, the observed differences in daily sap flow rate amplitude were explained by the natural trees difference in canopy cover, plant height and conductance of water vapour sites. However, when deficit irrigation was prescribed and, when the trees stopped being irrigated, they gradually lost their ability to adequately respond to the evaporative demands of the day, showing smaller variations in amplitudes sap flow. After irrigation ceased in May 15, transpiration rate gradually decreased from its maximum of 7 l h−1, when trees were fully irrigated and soil water content was near to field capacity, to values of less than 3 l h−1 by July 3 as the soil water content gradually acted as the transpiration limiting factor. Transpiration rates recovered after irrigation was re-introduced on July 4. Although low in the non-irrigation period, transpiration rates never dropped to zero and stayed between 37 and 50 l d−1 from May 27 to June 9, as trees were able to extract soil water in the absence of irrigation. Olive trees maintained transpiration to levels as high as 50 l d−1 suggesting that long after irrigation is suppressed, a considerable amount of water held in the soil is made available to the trees. Differences in evapotranspiration and transpiration rates during the same period also indicated that olive trees, making use of the extensive root system developed in the 12 m by 12 m tree spacing, were able to extract soil water and maintain transpiration levels as high as 50 l d−1, while soil water balance indicated tree evapotranspiration rates close to zero. This particular ability of dry-farmed olive trees to remove water held in the soil under adverse conditions of very low soil moisture and uncertainties associated with the real volume of soil effectively explored by the root system, make profile probe sensors, regardless of their accuracy, unsuitable for control of water uptake and management of dry-farmed olive orchards recently converted to irrigation. Likewise, watermark sensors, able to capture the variations of high soil water, failed to provide meaningfully values below 0.28 cm3 cm−1. Both sensors should be used with care in managing irrigation of olive tree orchards and, rather than relying on soil moisture status, monitoring tree water-use and response with the compensation heat-pulse method seems a more appropriate approach
publishDate 2007
dc.date.none.fl_str_mv 2007-01-01T00:00:00Z
2012-11-27T18:26:27Z
2012-11-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/6050
http://hdl.handle.net/10174/6050
https://doi.org/10.1016/j.biosystemseng.2007.03.027
url http://hdl.handle.net/10174/6050
https://doi.org/10.1016/j.biosystemseng.2007.03.027
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Biosystems Engineering 98: 102-114
ICAAM
fls@uevora.pt
pedrovalv@gmail.com
alice_f_ramos@yahoo.com
nd
nadiacastanheira@gmail.com
580
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Biosystems Engineering
publisher.none.fl_str_mv Biosystems Engineering
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136491699437568