Random rules from data streams
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Livro |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/83804 |
Resumo: | Existing works suggest that random inputs and random features produce good results in classification. In this paper we study the problem of generating random rule sets from data streams. One of the most interpretable and flexible models for data stream mining prediction tasks is the Very Fast Decision Rules learner (VFDR). In this work we extend the VFDR algorithm using random rules from data streams. The proposed algorithm generates several sets of rules. Each rule set is associated with a set of Natt attributes. The proposed algorithm maintains all properties required when learning from stationary data streams: online and any-time classification, processing each example once. Copyright 2013 ACM. |
id |
RCAP_eb0811498cdc5902364697073fbd9bb0 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/83804 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Random rules from data streamsCiência de computadores, Ciências da computação e da informaçãoComputer science, Computer and information sciencesExisting works suggest that random inputs and random features produce good results in classification. In this paper we study the problem of generating random rule sets from data streams. One of the most interpretable and flexible models for data stream mining prediction tasks is the Very Fast Decision Rules learner (VFDR). In this work we extend the VFDR algorithm using random rules from data streams. The proposed algorithm generates several sets of rules. Each rule set is associated with a set of Natt attributes. The proposed algorithm maintains all properties required when learning from stationary data streams: online and any-time classification, processing each example once. Copyright 2013 ACM.20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/83804eng10.1145/2480362.2480518Ezilda AlmeidaPetr KosinaJoão Gamainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:18:32Zoai:repositorio-aberto.up.pt:10216/83804Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:20:15.821679Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Random rules from data streams |
title |
Random rules from data streams |
spellingShingle |
Random rules from data streams Ezilda Almeida Ciência de computadores, Ciências da computação e da informação Computer science, Computer and information sciences |
title_short |
Random rules from data streams |
title_full |
Random rules from data streams |
title_fullStr |
Random rules from data streams |
title_full_unstemmed |
Random rules from data streams |
title_sort |
Random rules from data streams |
author |
Ezilda Almeida |
author_facet |
Ezilda Almeida Petr Kosina João Gama |
author_role |
author |
author2 |
Petr Kosina João Gama |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Ezilda Almeida Petr Kosina João Gama |
dc.subject.por.fl_str_mv |
Ciência de computadores, Ciências da computação e da informação Computer science, Computer and information sciences |
topic |
Ciência de computadores, Ciências da computação e da informação Computer science, Computer and information sciences |
description |
Existing works suggest that random inputs and random features produce good results in classification. In this paper we study the problem of generating random rule sets from data streams. One of the most interpretable and flexible models for data stream mining prediction tasks is the Very Fast Decision Rules learner (VFDR). In this work we extend the VFDR algorithm using random rules from data streams. The proposed algorithm generates several sets of rules. Each rule set is associated with a set of Natt attributes. The proposed algorithm maintains all properties required when learning from stationary data streams: online and any-time classification, processing each example once. Copyright 2013 ACM. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2013-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/book |
format |
book |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/83804 |
url |
https://hdl.handle.net/10216/83804 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1145/2480362.2480518 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136119507386368 |