A dichotomy in area-preserving reversible maps
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.2/13895 |
Resumo: | In this paper we study R-reversible area-preserving maps f : M → M on a two-dimensional Riemannian closed manifold M, i.e. diffeomorphisms f such that R ◦ f = f−1 ◦ R where R: M → M is an isometric involution. We obtain a C1-residual subset where any map inside it is Anosov or else has a dense set of elliptic periodic orbits, thus establishing the stability conjecture in this setting. Along the paper we derive the C1-Closing Lemma for reversible maps and other perturbation toolboxes. |
id |
RCAP_eb428fa770ef4d7c3d7ad7ecbe8caa8a |
---|---|
oai_identifier_str |
oai:repositorioaberto.uab.pt:10400.2/13895 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A dichotomy in area-preserving reversible mapsReversing symmetryArea-preserving mapClosing LemmaElliptic pointIn this paper we study R-reversible area-preserving maps f : M → M on a two-dimensional Riemannian closed manifold M, i.e. diffeomorphisms f such that R ◦ f = f−1 ◦ R where R: M → M is an isometric involution. We obtain a C1-residual subset where any map inside it is Anosov or else has a dense set of elliptic periodic orbits, thus establishing the stability conjecture in this setting. Along the paper we derive the C1-Closing Lemma for reversible maps and other perturbation toolboxes.SpringerRepositório AbertoBessa, MárioRodrigues, Alexandre A. P.2023-05-30T08:58:03Z20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/13895engBessa, M., Rodrigues, A.A.P. A Dichotomy in Area-Preserving Reversible Maps. Qual. Theory Dyn. Syst. 15, 309–326 (2016).10.1007/s12346-015-0155-yinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T15:46:14Zoai:repositorioaberto.uab.pt:10400.2/13895Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:52:48.232473Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A dichotomy in area-preserving reversible maps |
title |
A dichotomy in area-preserving reversible maps |
spellingShingle |
A dichotomy in area-preserving reversible maps Bessa, Mário Reversing symmetry Area-preserving map Closing Lemma Elliptic point |
title_short |
A dichotomy in area-preserving reversible maps |
title_full |
A dichotomy in area-preserving reversible maps |
title_fullStr |
A dichotomy in area-preserving reversible maps |
title_full_unstemmed |
A dichotomy in area-preserving reversible maps |
title_sort |
A dichotomy in area-preserving reversible maps |
author |
Bessa, Mário |
author_facet |
Bessa, Mário Rodrigues, Alexandre A. P. |
author_role |
author |
author2 |
Rodrigues, Alexandre A. P. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Repositório Aberto |
dc.contributor.author.fl_str_mv |
Bessa, Mário Rodrigues, Alexandre A. P. |
dc.subject.por.fl_str_mv |
Reversing symmetry Area-preserving map Closing Lemma Elliptic point |
topic |
Reversing symmetry Area-preserving map Closing Lemma Elliptic point |
description |
In this paper we study R-reversible area-preserving maps f : M → M on a two-dimensional Riemannian closed manifold M, i.e. diffeomorphisms f such that R ◦ f = f−1 ◦ R where R: M → M is an isometric involution. We obtain a C1-residual subset where any map inside it is Anosov or else has a dense set of elliptic periodic orbits, thus establishing the stability conjecture in this setting. Along the paper we derive the C1-Closing Lemma for reversible maps and other perturbation toolboxes. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 2015-01-01T00:00:00Z 2023-05-30T08:58:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.2/13895 |
url |
http://hdl.handle.net/10400.2/13895 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Bessa, M., Rodrigues, A.A.P. A Dichotomy in Area-Preserving Reversible Maps. Qual. Theory Dyn. Syst. 15, 309–326 (2016). 10.1007/s12346-015-0155-y |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135121782079488 |