Estimation of Productivity and Above-Ground Biomass for Corn (Zea mays) via Vegetation Indices in Madeira Island

Detalhes bibliográficos
Autor(a) principal: Macedo, Fabrício Lopes
Data de Publicação: 2023
Outros Autores: Nóbrega, Humberto, Freitas, José G. R. de, Ragonezi, Carla, Pinto, Lino, Rosa, Joana, Carvalho, Miguel A. A. Pinheiro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.13/5462
Resumo: The advancement of technology associated with the field, especially the use of unmanned aerial vehicles (UAV) coupled with multispectral cameras, allows us to monitor the condition of crops in real time and contribute to the field of machine learning. The objective of this study was to estimate both productivity and above-ground biomass (AGB) for the corn crop by applying different vegetation indices (VIs) via high-resolution aerial imagery. Among the indices tested, strong correlations were obtained between productivity and the normalized difference vegetation index (NDVI) with a significance level of p < 0.05 (0.719), as well as for the normalized difference red edge (NDRE), or green normalized difference vegetation index (GNDVI) with crop productivity (p < 0.01), respectively 0.809 and 0.859. The AGB results align with those obtained previously; GNDVI and NDRE showed high correlations, but now with a significance level of p < 0.05 (0.758 and 0.695). Both GNDVI and NDRE indices showed coefficients of determination for productivity and AGB estimation with 0.738 and 0.654, and 0.701 and 0.632, respectively. The use of the GNDVI and NDRE indices shows excellent results for estimating productivity as well as AGB for the corn crop, both at the spatial and numerical levels. The possibility of predicting crop productivity is an essential tool for producers, since it allows them to make timely decisions to correct any deficit present in their agricultural plots, and further contributes to AI integration for drone digital optimization.
id RCAP_eb69df7db6f7714fd94af8ef6d7d27c8
oai_identifier_str oai:digituma.uma.pt:10400.13/5462
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Estimation of Productivity and Above-Ground Biomass for Corn (Zea mays) via Vegetation Indices in Madeira IslandPrecision agricultureNDRENDVIGNDVIModeling trainingMachine learningMultispectral imagesArtificial intelligence.Escola Superior de Tecnologias e GestãoFaculdade de Ciências da VidaThe advancement of technology associated with the field, especially the use of unmanned aerial vehicles (UAV) coupled with multispectral cameras, allows us to monitor the condition of crops in real time and contribute to the field of machine learning. The objective of this study was to estimate both productivity and above-ground biomass (AGB) for the corn crop by applying different vegetation indices (VIs) via high-resolution aerial imagery. Among the indices tested, strong correlations were obtained between productivity and the normalized difference vegetation index (NDVI) with a significance level of p < 0.05 (0.719), as well as for the normalized difference red edge (NDRE), or green normalized difference vegetation index (GNDVI) with crop productivity (p < 0.01), respectively 0.809 and 0.859. The AGB results align with those obtained previously; GNDVI and NDRE showed high correlations, but now with a significance level of p < 0.05 (0.758 and 0.695). Both GNDVI and NDRE indices showed coefficients of determination for productivity and AGB estimation with 0.738 and 0.654, and 0.701 and 0.632, respectively. The use of the GNDVI and NDRE indices shows excellent results for estimating productivity as well as AGB for the corn crop, both at the spatial and numerical levels. The possibility of predicting crop productivity is an essential tool for producers, since it allows them to make timely decisions to correct any deficit present in their agricultural plots, and further contributes to AI integration for drone digital optimization.MDPIDigitUMaMacedo, Fabrício LopesNóbrega, HumbertoFreitas, José G. R. deRagonezi, CarlaPinto, LinoRosa, JoanaCarvalho, Miguel A. A. Pinheiro2024-01-08T12:25:32Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.13/5462engMacedo, F.L.; Nóbrega, H.; de Freitas, J.G.R.; Ragonezi, C.; Pinto, L.; Rosa, J.; Pinheiro de Carvalho, M.A.A. Estimation of Productivity and Above-Ground Biomass for Corn (Zea mays) via Vegetation Indices in Madeira Island. Agriculture 2023, 13, 1115. https://doi.org/10.3390/ agriculture1306111510.3390/agriculture13061115info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-14T07:14:11Zoai:digituma.uma.pt:10400.13/5462Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:44:27.129485Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Estimation of Productivity and Above-Ground Biomass for Corn (Zea mays) via Vegetation Indices in Madeira Island
title Estimation of Productivity and Above-Ground Biomass for Corn (Zea mays) via Vegetation Indices in Madeira Island
spellingShingle Estimation of Productivity and Above-Ground Biomass for Corn (Zea mays) via Vegetation Indices in Madeira Island
Macedo, Fabrício Lopes
Precision agriculture
NDRE
NDVI
GNDVI
Modeling training
Machine learning
Multispectral images
Artificial intelligence
.
Escola Superior de Tecnologias e Gestão
Faculdade de Ciências da Vida
title_short Estimation of Productivity and Above-Ground Biomass for Corn (Zea mays) via Vegetation Indices in Madeira Island
title_full Estimation of Productivity and Above-Ground Biomass for Corn (Zea mays) via Vegetation Indices in Madeira Island
title_fullStr Estimation of Productivity and Above-Ground Biomass for Corn (Zea mays) via Vegetation Indices in Madeira Island
title_full_unstemmed Estimation of Productivity and Above-Ground Biomass for Corn (Zea mays) via Vegetation Indices in Madeira Island
title_sort Estimation of Productivity and Above-Ground Biomass for Corn (Zea mays) via Vegetation Indices in Madeira Island
author Macedo, Fabrício Lopes
author_facet Macedo, Fabrício Lopes
Nóbrega, Humberto
Freitas, José G. R. de
Ragonezi, Carla
Pinto, Lino
Rosa, Joana
Carvalho, Miguel A. A. Pinheiro
author_role author
author2 Nóbrega, Humberto
Freitas, José G. R. de
Ragonezi, Carla
Pinto, Lino
Rosa, Joana
Carvalho, Miguel A. A. Pinheiro
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv DigitUMa
dc.contributor.author.fl_str_mv Macedo, Fabrício Lopes
Nóbrega, Humberto
Freitas, José G. R. de
Ragonezi, Carla
Pinto, Lino
Rosa, Joana
Carvalho, Miguel A. A. Pinheiro
dc.subject.por.fl_str_mv Precision agriculture
NDRE
NDVI
GNDVI
Modeling training
Machine learning
Multispectral images
Artificial intelligence
.
Escola Superior de Tecnologias e Gestão
Faculdade de Ciências da Vida
topic Precision agriculture
NDRE
NDVI
GNDVI
Modeling training
Machine learning
Multispectral images
Artificial intelligence
.
Escola Superior de Tecnologias e Gestão
Faculdade de Ciências da Vida
description The advancement of technology associated with the field, especially the use of unmanned aerial vehicles (UAV) coupled with multispectral cameras, allows us to monitor the condition of crops in real time and contribute to the field of machine learning. The objective of this study was to estimate both productivity and above-ground biomass (AGB) for the corn crop by applying different vegetation indices (VIs) via high-resolution aerial imagery. Among the indices tested, strong correlations were obtained between productivity and the normalized difference vegetation index (NDVI) with a significance level of p < 0.05 (0.719), as well as for the normalized difference red edge (NDRE), or green normalized difference vegetation index (GNDVI) with crop productivity (p < 0.01), respectively 0.809 and 0.859. The AGB results align with those obtained previously; GNDVI and NDRE showed high correlations, but now with a significance level of p < 0.05 (0.758 and 0.695). Both GNDVI and NDRE indices showed coefficients of determination for productivity and AGB estimation with 0.738 and 0.654, and 0.701 and 0.632, respectively. The use of the GNDVI and NDRE indices shows excellent results for estimating productivity as well as AGB for the corn crop, both at the spatial and numerical levels. The possibility of predicting crop productivity is an essential tool for producers, since it allows them to make timely decisions to correct any deficit present in their agricultural plots, and further contributes to AI integration for drone digital optimization.
publishDate 2023
dc.date.none.fl_str_mv 2023
2023-01-01T00:00:00Z
2024-01-08T12:25:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.13/5462
url http://hdl.handle.net/10400.13/5462
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Macedo, F.L.; Nóbrega, H.; de Freitas, J.G.R.; Ragonezi, C.; Pinto, L.; Rosa, J.; Pinheiro de Carvalho, M.A.A. Estimation of Productivity and Above-Ground Biomass for Corn (Zea mays) via Vegetation Indices in Madeira Island. Agriculture 2023, 13, 1115. https://doi.org/10.3390/ agriculture13061115
10.3390/agriculture13061115
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136940735332352