Performance of radiomic models in the prediction of lymph node metastasis in papillary thyroid cancer patients
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/39365 |
Resumo: | This research presents a meta-analysis reviewing the use of Radiomics in oncology, specifically in papillary thyroid cancer (PTC) patients. The study investigates the potential of radiomic features for diagnosing lymph node metastasis in PTC and the impact of imaging modalities on machine learning models. Sub-group analysis reveals significant differences in specificity among imaging modalities and lymph node categories, while sensitivity remains unchanged. Ultrasonography shows higher specificity but limitations in central cervical lymph nodes. The findings highlight the heterogeneity of diagnostic accuracy within different anatomical regions. Bivariate meta-regression analysis confirms sub-group results and combining sub-group analysis and meta-regression aids clinical decision-making, considering tumor heterogeneity. |
id |
RCAP_eb891a56d946bc9ec8422a20983ecfc4 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/39365 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Performance of radiomic models in the prediction of lymph node metastasis in papillary thyroid cancer patientsRadiomicsPapillary thyroid cancerMachine learningMeta-analysisMedical imagingImaging biomarkersThis research presents a meta-analysis reviewing the use of Radiomics in oncology, specifically in papillary thyroid cancer (PTC) patients. The study investigates the potential of radiomic features for diagnosing lymph node metastasis in PTC and the impact of imaging modalities on machine learning models. Sub-group analysis reveals significant differences in specificity among imaging modalities and lymph node categories, while sensitivity remains unchanged. Ultrasonography shows higher specificity but limitations in central cervical lymph nodes. The findings highlight the heterogeneity of diagnostic accuracy within different anatomical regions. Bivariate meta-regression analysis confirms sub-group results and combining sub-group analysis and meta-regression aids clinical decision-making, considering tumor heterogeneity.Este trabalho apresenta uma revisão e meta-análise que sumariza o uso da Radiómica em oncologia, especificamente em pacientes com cancro da tiróide papilar. Este projeto investiga o potencial do uso de características radiómicas para o diagnóstico de metástase em nódulos linfáticos em pacientes com cancro papilar da tiróide e o impacto das modalidades de imagem em modelos de aprendizagem computacional. A análise de subgrupos revela diferenças significativas na especificidade entre as modalidades de imagem e as categorias de nódulos linfáticos, enquanto a sensibilidade permanece inalterada. Ultrassom mostra uma especificidade mais alta, mas com limitações nos nódulos linfáticos cervicais centrais. Os resultados destacam a heterogeneidade na precisão diagnóstica dentro de diferentes regiões anatómicas. A análise de meta-regressão bivariada confirma os resultados dos subgrupos e a combinação da análise de subgrupos e meta-regressão auxilia na tomada de decisões clínicas, considerando a hetergeneidade tumoral.2023-09-12T09:34:11Z2023-07-24T00:00:00Z2023-07-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/39365engOliveira, Rafael Silva Lopesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:16:53Zoai:ria.ua.pt:10773/39365Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:09:33.819529Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Performance of radiomic models in the prediction of lymph node metastasis in papillary thyroid cancer patients |
title |
Performance of radiomic models in the prediction of lymph node metastasis in papillary thyroid cancer patients |
spellingShingle |
Performance of radiomic models in the prediction of lymph node metastasis in papillary thyroid cancer patients Oliveira, Rafael Silva Lopes Radiomics Papillary thyroid cancer Machine learning Meta-analysis Medical imaging Imaging biomarkers |
title_short |
Performance of radiomic models in the prediction of lymph node metastasis in papillary thyroid cancer patients |
title_full |
Performance of radiomic models in the prediction of lymph node metastasis in papillary thyroid cancer patients |
title_fullStr |
Performance of radiomic models in the prediction of lymph node metastasis in papillary thyroid cancer patients |
title_full_unstemmed |
Performance of radiomic models in the prediction of lymph node metastasis in papillary thyroid cancer patients |
title_sort |
Performance of radiomic models in the prediction of lymph node metastasis in papillary thyroid cancer patients |
author |
Oliveira, Rafael Silva Lopes |
author_facet |
Oliveira, Rafael Silva Lopes |
author_role |
author |
dc.contributor.author.fl_str_mv |
Oliveira, Rafael Silva Lopes |
dc.subject.por.fl_str_mv |
Radiomics Papillary thyroid cancer Machine learning Meta-analysis Medical imaging Imaging biomarkers |
topic |
Radiomics Papillary thyroid cancer Machine learning Meta-analysis Medical imaging Imaging biomarkers |
description |
This research presents a meta-analysis reviewing the use of Radiomics in oncology, specifically in papillary thyroid cancer (PTC) patients. The study investigates the potential of radiomic features for diagnosing lymph node metastasis in PTC and the impact of imaging modalities on machine learning models. Sub-group analysis reveals significant differences in specificity among imaging modalities and lymph node categories, while sensitivity remains unchanged. Ultrasonography shows higher specificity but limitations in central cervical lymph nodes. The findings highlight the heterogeneity of diagnostic accuracy within different anatomical regions. Bivariate meta-regression analysis confirms sub-group results and combining sub-group analysis and meta-regression aids clinical decision-making, considering tumor heterogeneity. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09-12T09:34:11Z 2023-07-24T00:00:00Z 2023-07-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/39365 |
url |
http://hdl.handle.net/10773/39365 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137746334253056 |