Synchronized gravitational atoms from mergers of bosonic stars

Detalhes bibliográficos
Autor(a) principal: Sanchis-Gual, Nicolas
Data de Publicação: 2020
Outros Autores: Zilhão, Miguel, Herdeiro, Carlos, Di Giovanni, Fabrizio, Font, José A., Radu, Eugen
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/29903
Resumo: If ultralight bosonic fields exist in nature as dark matter, superradiance spins down rotating black holes (BHs), dynamically endowing them with equilibrium bosonic clouds, here dubbed synchronized gravitational atoms (SGAs). The self-gravity of these same fields, on the other hand, can lump them into (scalar or vector) horizonless solitons known as bosonic stars (BSs). We show that the dynamics of BSs yield a new channel forming SGAs. We study BS binaries that merge to form spinning BHs. After horizon formation, the BH spins up by accreting the bosonic field, but a remnant lingers around the horizon. If just enough angular momentum is present, the BH spin up stalls precisely as the remnant becomes a SGA. Different initial data lead to SGAs with different quantum numbers. Thus, SGAs may form both from superradiance-driven BH spin down and accretion-driven BH spin up. The latter process, moreover, can result in heavier SGAs than those obtained from the former: in one example herein, ∼ 18 % of the final system’s energy and ∼ 50 % of its angular momentum remain in the SGA. We suggest that even higher values may occur in systems wherein both accretion and superradiance contribute to the SGA formation.
id RCAP_ebd0bdddf129506b572dff9385d44bca
oai_identifier_str oai:ria.ua.pt:10773/29903
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Synchronized gravitational atoms from mergers of bosonic starsIf ultralight bosonic fields exist in nature as dark matter, superradiance spins down rotating black holes (BHs), dynamically endowing them with equilibrium bosonic clouds, here dubbed synchronized gravitational atoms (SGAs). The self-gravity of these same fields, on the other hand, can lump them into (scalar or vector) horizonless solitons known as bosonic stars (BSs). We show that the dynamics of BSs yield a new channel forming SGAs. We study BS binaries that merge to form spinning BHs. After horizon formation, the BH spins up by accreting the bosonic field, but a remnant lingers around the horizon. If just enough angular momentum is present, the BH spin up stalls precisely as the remnant becomes a SGA. Different initial data lead to SGAs with different quantum numbers. Thus, SGAs may form both from superradiance-driven BH spin down and accretion-driven BH spin up. The latter process, moreover, can result in heavier SGAs than those obtained from the former: in one example herein, ∼ 18 % of the final system’s energy and ∼ 50 % of its angular momentum remain in the SGA. We suggest that even higher values may occur in systems wherein both accretion and superradiance contribute to the SGA formation.American Physical Society2020-11-25T18:38:52Z2020-11-15T00:00:00Z2020-11-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/29903eng2470-001010.1103/PhysRevD.102.101504Sanchis-Gual, NicolasZilhão, MiguelHerdeiro, CarlosDi Giovanni, FabrizioFont, José A.Radu, Eugeninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:57:48Zoai:ria.ua.pt:10773/29903Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:02:07.980065Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Synchronized gravitational atoms from mergers of bosonic stars
title Synchronized gravitational atoms from mergers of bosonic stars
spellingShingle Synchronized gravitational atoms from mergers of bosonic stars
Sanchis-Gual, Nicolas
title_short Synchronized gravitational atoms from mergers of bosonic stars
title_full Synchronized gravitational atoms from mergers of bosonic stars
title_fullStr Synchronized gravitational atoms from mergers of bosonic stars
title_full_unstemmed Synchronized gravitational atoms from mergers of bosonic stars
title_sort Synchronized gravitational atoms from mergers of bosonic stars
author Sanchis-Gual, Nicolas
author_facet Sanchis-Gual, Nicolas
Zilhão, Miguel
Herdeiro, Carlos
Di Giovanni, Fabrizio
Font, José A.
Radu, Eugen
author_role author
author2 Zilhão, Miguel
Herdeiro, Carlos
Di Giovanni, Fabrizio
Font, José A.
Radu, Eugen
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Sanchis-Gual, Nicolas
Zilhão, Miguel
Herdeiro, Carlos
Di Giovanni, Fabrizio
Font, José A.
Radu, Eugen
description If ultralight bosonic fields exist in nature as dark matter, superradiance spins down rotating black holes (BHs), dynamically endowing them with equilibrium bosonic clouds, here dubbed synchronized gravitational atoms (SGAs). The self-gravity of these same fields, on the other hand, can lump them into (scalar or vector) horizonless solitons known as bosonic stars (BSs). We show that the dynamics of BSs yield a new channel forming SGAs. We study BS binaries that merge to form spinning BHs. After horizon formation, the BH spins up by accreting the bosonic field, but a remnant lingers around the horizon. If just enough angular momentum is present, the BH spin up stalls precisely as the remnant becomes a SGA. Different initial data lead to SGAs with different quantum numbers. Thus, SGAs may form both from superradiance-driven BH spin down and accretion-driven BH spin up. The latter process, moreover, can result in heavier SGAs than those obtained from the former: in one example herein, ∼ 18 % of the final system’s energy and ∼ 50 % of its angular momentum remain in the SGA. We suggest that even higher values may occur in systems wherein both accretion and superradiance contribute to the SGA formation.
publishDate 2020
dc.date.none.fl_str_mv 2020-11-25T18:38:52Z
2020-11-15T00:00:00Z
2020-11-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/29903
url http://hdl.handle.net/10773/29903
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2470-0010
10.1103/PhysRevD.102.101504
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137676943687680