Broadband matched-field processing: coherent and incoherent approaches

Detalhes bibliográficos
Autor(a) principal: Soares, C.
Data de Publicação: 2003
Outros Autores: Jesus, S. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/7349
Resumo: Matched-field based methods always involve the comparison of the output of a physical model and the actual data. The method of comparison and the nature of the data varies according to the problem at hand, but the result becomes always largely conditioned by the accurateness of the physical model and the amount of data available. The usage of broadband methods has become a widely used approach to increase the amount of data and to stabilize the estimation process. Due to the difficulties to accurately predict the phase of the acoustic field the problem whether the information should be coherently or incoherently combined across frequency has been an open debate in the last years. This paper provides a data consistent model for the observed signal, formed by a deterministic channel structure multiplied by a perturbation random factor plus noise. The cross-frequency channel structure and the decorrelation of the perturbation random factor are shown to be the main causes of processor performance degradation. Different Bartlett processors, such as the incoherent processor [Baggeroer et al., J. Acoust. Soc. Am. 80, 571-587 (1988)], the coherent normalized processor [Z.-H. Michalopoulou, IEEE J. Ocean Eng. 21, 384-392 (1996)] and the matched-phase processor [Orris et al., J. Acoust. Soc. Am. 107, 2563-2375 (2000)], are reviewed and compared to the proposed cross-frequency incoherent processor. It is analytically shown that the proposed processor has the same performance as the matched-phase processor at the maximum of the ambiguity surface, without the need for estimating the phase terms and thus having an extremely low computational cost. (C) 2003 Acoustical Society of America.
id RCAP_ec1e6e0c78ef3bf81da744416d1596e7
oai_identifier_str oai:sapientia.ualg.pt:10400.1/7349
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Broadband matched-field processing: coherent and incoherent approachesMatched-field based methods always involve the comparison of the output of a physical model and the actual data. The method of comparison and the nature of the data varies according to the problem at hand, but the result becomes always largely conditioned by the accurateness of the physical model and the amount of data available. The usage of broadband methods has become a widely used approach to increase the amount of data and to stabilize the estimation process. Due to the difficulties to accurately predict the phase of the acoustic field the problem whether the information should be coherently or incoherently combined across frequency has been an open debate in the last years. This paper provides a data consistent model for the observed signal, formed by a deterministic channel structure multiplied by a perturbation random factor plus noise. The cross-frequency channel structure and the decorrelation of the perturbation random factor are shown to be the main causes of processor performance degradation. Different Bartlett processors, such as the incoherent processor [Baggeroer et al., J. Acoust. Soc. Am. 80, 571-587 (1988)], the coherent normalized processor [Z.-H. Michalopoulou, IEEE J. Ocean Eng. 21, 384-392 (1996)] and the matched-phase processor [Orris et al., J. Acoust. Soc. Am. 107, 2563-2375 (2000)], are reviewed and compared to the proposed cross-frequency incoherent processor. It is analytically shown that the proposed processor has the same performance as the matched-phase processor at the maximum of the ambiguity surface, without the need for estimating the phase terms and thus having an extremely low computational cost. (C) 2003 Acoustical Society of America.Acoustical Society of AmericaSapientiaSoares, C.Jesus, S. M.2015-12-15T15:51:26Z20032003-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/7349eng0001-4966AUT: SJE00662;https://dx.doi.org/10.1121/1.1564016info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:18:28Zoai:sapientia.ualg.pt:10400.1/7349Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:59:45.420525Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Broadband matched-field processing: coherent and incoherent approaches
title Broadband matched-field processing: coherent and incoherent approaches
spellingShingle Broadband matched-field processing: coherent and incoherent approaches
Soares, C.
title_short Broadband matched-field processing: coherent and incoherent approaches
title_full Broadband matched-field processing: coherent and incoherent approaches
title_fullStr Broadband matched-field processing: coherent and incoherent approaches
title_full_unstemmed Broadband matched-field processing: coherent and incoherent approaches
title_sort Broadband matched-field processing: coherent and incoherent approaches
author Soares, C.
author_facet Soares, C.
Jesus, S. M.
author_role author
author2 Jesus, S. M.
author2_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Soares, C.
Jesus, S. M.
description Matched-field based methods always involve the comparison of the output of a physical model and the actual data. The method of comparison and the nature of the data varies according to the problem at hand, but the result becomes always largely conditioned by the accurateness of the physical model and the amount of data available. The usage of broadband methods has become a widely used approach to increase the amount of data and to stabilize the estimation process. Due to the difficulties to accurately predict the phase of the acoustic field the problem whether the information should be coherently or incoherently combined across frequency has been an open debate in the last years. This paper provides a data consistent model for the observed signal, formed by a deterministic channel structure multiplied by a perturbation random factor plus noise. The cross-frequency channel structure and the decorrelation of the perturbation random factor are shown to be the main causes of processor performance degradation. Different Bartlett processors, such as the incoherent processor [Baggeroer et al., J. Acoust. Soc. Am. 80, 571-587 (1988)], the coherent normalized processor [Z.-H. Michalopoulou, IEEE J. Ocean Eng. 21, 384-392 (1996)] and the matched-phase processor [Orris et al., J. Acoust. Soc. Am. 107, 2563-2375 (2000)], are reviewed and compared to the proposed cross-frequency incoherent processor. It is analytically shown that the proposed processor has the same performance as the matched-phase processor at the maximum of the ambiguity surface, without the need for estimating the phase terms and thus having an extremely low computational cost. (C) 2003 Acoustical Society of America.
publishDate 2003
dc.date.none.fl_str_mv 2003
2003-01-01T00:00:00Z
2015-12-15T15:51:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/7349
url http://hdl.handle.net/10400.1/7349
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0001-4966
AUT: SJE00662;
https://dx.doi.org/10.1121/1.1564016
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Acoustical Society of America
publisher.none.fl_str_mv Acoustical Society of America
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133221125881856