Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/53365 |
Resumo: | Growth modelling is essential to inform fisheries management but is often hampered by sampling biases and imperfect data. Additional methods such as interpolating data through back-calculation may be used to account for sampling bias but are often complex and time-consuming. Here, we present an approach to improve plausibility in growth estimates when small individuals are under-sampled, based on Bayesian fitting growth models using Markov Chain Monte Carlo (MCMC) with informative priors on growth parameters. Focusing on the blue jack mackerel, Trachurus picturatus, which is an important commercial fish in the southern northeast Atlantic, this Bayesian approach was evaluated in relation to standard growth model fitting methods, using both direct readings and back-calculation data. Matched growth parameter estimates were obtained with the von Bertalanffy growth function applied to back-calculated length at age and the Bayesian fitting, using MCMC to direct age readings, with both outperforming all other methods assessed. These results indicate that Bayesian inference may be a powerful addition in growth modelling using imperfect data and should be considered further in age and growth studies, provided relevant biological information can be gathered and included in the analyses. |
id |
RCAP_ec601fa90c651b088fc11d510520b815 |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/53365 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatusGrowth modelling is essential to inform fisheries management but is often hampered by sampling biases and imperfect data. Additional methods such as interpolating data through back-calculation may be used to account for sampling bias but are often complex and time-consuming. Here, we present an approach to improve plausibility in growth estimates when small individuals are under-sampled, based on Bayesian fitting growth models using Markov Chain Monte Carlo (MCMC) with informative priors on growth parameters. Focusing on the blue jack mackerel, Trachurus picturatus, which is an important commercial fish in the southern northeast Atlantic, this Bayesian approach was evaluated in relation to standard growth model fitting methods, using both direct readings and back-calculation data. Matched growth parameter estimates were obtained with the von Bertalanffy growth function applied to back-calculated length at age and the Bayesian fitting, using MCMC to direct age readings, with both outperforming all other methods assessed. These results indicate that Bayesian inference may be a powerful addition in growth modelling using imperfect data and should be considered further in age and growth studies, provided relevant biological information can be gathered and included in the analyses.MDPIRepositório da Universidade de LisboaNeves, AnaVieira, Ana RitaSequeira, VeraSilva, ElisabeteSilva, FredericaDuarte, Ana MartaMendes, SusanaGanhão, RuiAssis, CarlosSampaio e rebelo, RuiMagalhães, Maria FilomenaGil, Maria ManuelGordo, Leonel Serrano2022-06-09T16:58:34Z2022-022022-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/53365eng: Neves, A.; Vieira, A.R.; Sequeira, V.; Silva, E.; Silva, F.; Duarte, A.M.; Mendes, S.; Ganhão, R.; Assis, C.; Rebelo, R.; et al. Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus. Fishes 2022, 7, 52. https://doi.org/ 10.3390/fishes701005210.3390/fishes7010052info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T16:59:03Zoai:repositorio.ul.pt:10451/53365Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:04:17.973602Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus |
title |
Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus |
spellingShingle |
Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus Neves, Ana |
title_short |
Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus |
title_full |
Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus |
title_fullStr |
Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus |
title_full_unstemmed |
Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus |
title_sort |
Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus |
author |
Neves, Ana |
author_facet |
Neves, Ana Vieira, Ana Rita Sequeira, Vera Silva, Elisabete Silva, Frederica Duarte, Ana Marta Mendes, Susana Ganhão, Rui Assis, Carlos Sampaio e rebelo, Rui Magalhães, Maria Filomena Gil, Maria Manuel Gordo, Leonel Serrano |
author_role |
author |
author2 |
Vieira, Ana Rita Sequeira, Vera Silva, Elisabete Silva, Frederica Duarte, Ana Marta Mendes, Susana Ganhão, Rui Assis, Carlos Sampaio e rebelo, Rui Magalhães, Maria Filomena Gil, Maria Manuel Gordo, Leonel Serrano |
author2_role |
author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Neves, Ana Vieira, Ana Rita Sequeira, Vera Silva, Elisabete Silva, Frederica Duarte, Ana Marta Mendes, Susana Ganhão, Rui Assis, Carlos Sampaio e rebelo, Rui Magalhães, Maria Filomena Gil, Maria Manuel Gordo, Leonel Serrano |
description |
Growth modelling is essential to inform fisheries management but is often hampered by sampling biases and imperfect data. Additional methods such as interpolating data through back-calculation may be used to account for sampling bias but are often complex and time-consuming. Here, we present an approach to improve plausibility in growth estimates when small individuals are under-sampled, based on Bayesian fitting growth models using Markov Chain Monte Carlo (MCMC) with informative priors on growth parameters. Focusing on the blue jack mackerel, Trachurus picturatus, which is an important commercial fish in the southern northeast Atlantic, this Bayesian approach was evaluated in relation to standard growth model fitting methods, using both direct readings and back-calculation data. Matched growth parameter estimates were obtained with the von Bertalanffy growth function applied to back-calculated length at age and the Bayesian fitting, using MCMC to direct age readings, with both outperforming all other methods assessed. These results indicate that Bayesian inference may be a powerful addition in growth modelling using imperfect data and should be considered further in age and growth studies, provided relevant biological information can be gathered and included in the analyses. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-09T16:58:34Z 2022-02 2022-02-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/53365 |
url |
http://hdl.handle.net/10451/53365 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
: Neves, A.; Vieira, A.R.; Sequeira, V.; Silva, E.; Silva, F.; Duarte, A.M.; Mendes, S.; Ganhão, R.; Assis, C.; Rebelo, R.; et al. Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus. Fishes 2022, 7, 52. https://doi.org/ 10.3390/fishes7010052 10.3390/fishes7010052 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134594044264448 |