Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus

Detalhes bibliográficos
Autor(a) principal: Neves, Ana
Data de Publicação: 2022
Outros Autores: Vieira, Ana Rita, Sequeira, Vera, Silva, Elisabete, Silva, Frederica, Duarte, Ana Marta, Mendes, Susana, Ganhão, Rui, Assis, Carlos, Sampaio e rebelo, Rui, Magalhães, Maria Filomena, Gil, Maria Manuel, Gordo, Leonel Serrano
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10451/53365
Resumo: Growth modelling is essential to inform fisheries management but is often hampered by sampling biases and imperfect data. Additional methods such as interpolating data through back-calculation may be used to account for sampling bias but are often complex and time-consuming. Here, we present an approach to improve plausibility in growth estimates when small individuals are under-sampled, based on Bayesian fitting growth models using Markov Chain Monte Carlo (MCMC) with informative priors on growth parameters. Focusing on the blue jack mackerel, Trachurus picturatus, which is an important commercial fish in the southern northeast Atlantic, this Bayesian approach was evaluated in relation to standard growth model fitting methods, using both direct readings and back-calculation data. Matched growth parameter estimates were obtained with the von Bertalanffy growth function applied to back-calculated length at age and the Bayesian fitting, using MCMC to direct age readings, with both outperforming all other methods assessed. These results indicate that Bayesian inference may be a powerful addition in growth modelling using imperfect data and should be considered further in age and growth studies, provided relevant biological information can be gathered and included in the analyses.
id RCAP_ec601fa90c651b088fc11d510520b815
oai_identifier_str oai:repositorio.ul.pt:10451/53365
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatusGrowth modelling is essential to inform fisheries management but is often hampered by sampling biases and imperfect data. Additional methods such as interpolating data through back-calculation may be used to account for sampling bias but are often complex and time-consuming. Here, we present an approach to improve plausibility in growth estimates when small individuals are under-sampled, based on Bayesian fitting growth models using Markov Chain Monte Carlo (MCMC) with informative priors on growth parameters. Focusing on the blue jack mackerel, Trachurus picturatus, which is an important commercial fish in the southern northeast Atlantic, this Bayesian approach was evaluated in relation to standard growth model fitting methods, using both direct readings and back-calculation data. Matched growth parameter estimates were obtained with the von Bertalanffy growth function applied to back-calculated length at age and the Bayesian fitting, using MCMC to direct age readings, with both outperforming all other methods assessed. These results indicate that Bayesian inference may be a powerful addition in growth modelling using imperfect data and should be considered further in age and growth studies, provided relevant biological information can be gathered and included in the analyses.MDPIRepositório da Universidade de LisboaNeves, AnaVieira, Ana RitaSequeira, VeraSilva, ElisabeteSilva, FredericaDuarte, Ana MartaMendes, SusanaGanhão, RuiAssis, CarlosSampaio e rebelo, RuiMagalhães, Maria FilomenaGil, Maria ManuelGordo, Leonel Serrano2022-06-09T16:58:34Z2022-022022-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/53365eng: Neves, A.; Vieira, A.R.; Sequeira, V.; Silva, E.; Silva, F.; Duarte, A.M.; Mendes, S.; Ganhão, R.; Assis, C.; Rebelo, R.; et al. Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus. Fishes 2022, 7, 52. https://doi.org/ 10.3390/fishes701005210.3390/fishes7010052info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T16:59:03Zoai:repositorio.ul.pt:10451/53365Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:04:17.973602Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus
title Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus
spellingShingle Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus
Neves, Ana
title_short Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus
title_full Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus
title_fullStr Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus
title_full_unstemmed Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus
title_sort Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus
author Neves, Ana
author_facet Neves, Ana
Vieira, Ana Rita
Sequeira, Vera
Silva, Elisabete
Silva, Frederica
Duarte, Ana Marta
Mendes, Susana
Ganhão, Rui
Assis, Carlos
Sampaio e rebelo, Rui
Magalhães, Maria Filomena
Gil, Maria Manuel
Gordo, Leonel Serrano
author_role author
author2 Vieira, Ana Rita
Sequeira, Vera
Silva, Elisabete
Silva, Frederica
Duarte, Ana Marta
Mendes, Susana
Ganhão, Rui
Assis, Carlos
Sampaio e rebelo, Rui
Magalhães, Maria Filomena
Gil, Maria Manuel
Gordo, Leonel Serrano
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Neves, Ana
Vieira, Ana Rita
Sequeira, Vera
Silva, Elisabete
Silva, Frederica
Duarte, Ana Marta
Mendes, Susana
Ganhão, Rui
Assis, Carlos
Sampaio e rebelo, Rui
Magalhães, Maria Filomena
Gil, Maria Manuel
Gordo, Leonel Serrano
description Growth modelling is essential to inform fisheries management but is often hampered by sampling biases and imperfect data. Additional methods such as interpolating data through back-calculation may be used to account for sampling bias but are often complex and time-consuming. Here, we present an approach to improve plausibility in growth estimates when small individuals are under-sampled, based on Bayesian fitting growth models using Markov Chain Monte Carlo (MCMC) with informative priors on growth parameters. Focusing on the blue jack mackerel, Trachurus picturatus, which is an important commercial fish in the southern northeast Atlantic, this Bayesian approach was evaluated in relation to standard growth model fitting methods, using both direct readings and back-calculation data. Matched growth parameter estimates were obtained with the von Bertalanffy growth function applied to back-calculated length at age and the Bayesian fitting, using MCMC to direct age readings, with both outperforming all other methods assessed. These results indicate that Bayesian inference may be a powerful addition in growth modelling using imperfect data and should be considered further in age and growth studies, provided relevant biological information can be gathered and included in the analyses.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-09T16:58:34Z
2022-02
2022-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/53365
url http://hdl.handle.net/10451/53365
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv : Neves, A.; Vieira, A.R.; Sequeira, V.; Silva, E.; Silva, F.; Duarte, A.M.; Mendes, S.; Ganhão, R.; Assis, C.; Rebelo, R.; et al. Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus. Fishes 2022, 7, 52. https://doi.org/ 10.3390/fishes7010052
10.3390/fishes7010052
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134594044264448