Structure tensor-based depth estimation from light field images

Detalhes bibliográficos
Autor(a) principal: Lourenço, Rui Miguel Leonel
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.8/3927
Resumo: This thesis presents a novel framework for depth estimation from light eld images based on the use of the structure tensor. A study of prior knowledge introduces general concepts of depth estimation from light eld images. This is followed by a study of the state-of-the art, including a discussion of several distinct depth estimation methods and an explanation of the structure tensor and how it has been used to acquire depth estimation from a light eld image. The framework developed improves on two limitations of traditional structure tensor derived depth maps. In traditional approaches, foreground objects present enlarged boundaries in the estimated disparity map. This is known as silhouette enlargement. The proposed method for silhouette enhancement uses edge detection algorithms on both the epipolar plane images and their corresponding structure tensor-based disparity estimation and analyses the di erence in the position of these di erent edges to establish a map of the erroneous regions. These regions can be inpainted with values from the correct region. Additionally, a method was developed to enhance edge information by linking edge segments. Structure tensor-based methods produce results with some noise. This increases the di culty of using the resulting depth maps to estimate the orientation of scenic surfaces, since the di erence between the disparity of adjacent pixels often does not correlate with the real orientation of the scenic structure. To address this limitation, a seed growing approach was adopted, detecting and tting image planes in a least squares sense, and using the estimated planes to calculate the depth for the corresponding planar region. The full framework provides signi cant improvements on previous structure tensorbased methods. When compared with other state-of-the-art methods, it proves competitive in both mean square error and mean angle error, with no single method proving superior in every metric.
id RCAP_ec62565d8817ab32e408e25fc4cc4710
oai_identifier_str oai:iconline.ipleiria.pt:10400.8/3927
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Structure tensor-based depth estimation from light field imagesLight fieldStructure tensorDepth mapDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaThis thesis presents a novel framework for depth estimation from light eld images based on the use of the structure tensor. A study of prior knowledge introduces general concepts of depth estimation from light eld images. This is followed by a study of the state-of-the art, including a discussion of several distinct depth estimation methods and an explanation of the structure tensor and how it has been used to acquire depth estimation from a light eld image. The framework developed improves on two limitations of traditional structure tensor derived depth maps. In traditional approaches, foreground objects present enlarged boundaries in the estimated disparity map. This is known as silhouette enlargement. The proposed method for silhouette enhancement uses edge detection algorithms on both the epipolar plane images and their corresponding structure tensor-based disparity estimation and analyses the di erence in the position of these di erent edges to establish a map of the erroneous regions. These regions can be inpainted with values from the correct region. Additionally, a method was developed to enhance edge information by linking edge segments. Structure tensor-based methods produce results with some noise. This increases the di culty of using the resulting depth maps to estimate the orientation of scenic surfaces, since the di erence between the disparity of adjacent pixels often does not correlate with the real orientation of the scenic structure. To address this limitation, a seed growing approach was adopted, detecting and tting image planes in a least squares sense, and using the estimated planes to calculate the depth for the corresponding planar region. The full framework provides signi cant improvements on previous structure tensorbased methods. When compared with other state-of-the-art methods, it proves competitive in both mean square error and mean angle error, with no single method proving superior in every metric.Assunção, Pedro António Amado deTávora, Luís Miguel de Oliveira Pegado de Noronha eIC-OnlineLourenço, Rui Miguel Leonel2019-04-22T13:48:57Z2019-02-052019-02-05T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.8/3927TID:202227057enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-17T15:48:13Zoai:iconline.ipleiria.pt:10400.8/3927Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:47:55.441825Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Structure tensor-based depth estimation from light field images
title Structure tensor-based depth estimation from light field images
spellingShingle Structure tensor-based depth estimation from light field images
Lourenço, Rui Miguel Leonel
Light field
Structure tensor
Depth map
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Structure tensor-based depth estimation from light field images
title_full Structure tensor-based depth estimation from light field images
title_fullStr Structure tensor-based depth estimation from light field images
title_full_unstemmed Structure tensor-based depth estimation from light field images
title_sort Structure tensor-based depth estimation from light field images
author Lourenço, Rui Miguel Leonel
author_facet Lourenço, Rui Miguel Leonel
author_role author
dc.contributor.none.fl_str_mv Assunção, Pedro António Amado de
Távora, Luís Miguel de Oliveira Pegado de Noronha e
IC-Online
dc.contributor.author.fl_str_mv Lourenço, Rui Miguel Leonel
dc.subject.por.fl_str_mv Light field
Structure tensor
Depth map
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Light field
Structure tensor
Depth map
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description This thesis presents a novel framework for depth estimation from light eld images based on the use of the structure tensor. A study of prior knowledge introduces general concepts of depth estimation from light eld images. This is followed by a study of the state-of-the art, including a discussion of several distinct depth estimation methods and an explanation of the structure tensor and how it has been used to acquire depth estimation from a light eld image. The framework developed improves on two limitations of traditional structure tensor derived depth maps. In traditional approaches, foreground objects present enlarged boundaries in the estimated disparity map. This is known as silhouette enlargement. The proposed method for silhouette enhancement uses edge detection algorithms on both the epipolar plane images and their corresponding structure tensor-based disparity estimation and analyses the di erence in the position of these di erent edges to establish a map of the erroneous regions. These regions can be inpainted with values from the correct region. Additionally, a method was developed to enhance edge information by linking edge segments. Structure tensor-based methods produce results with some noise. This increases the di culty of using the resulting depth maps to estimate the orientation of scenic surfaces, since the di erence between the disparity of adjacent pixels often does not correlate with the real orientation of the scenic structure. To address this limitation, a seed growing approach was adopted, detecting and tting image planes in a least squares sense, and using the estimated planes to calculate the depth for the corresponding planar region. The full framework provides signi cant improvements on previous structure tensorbased methods. When compared with other state-of-the-art methods, it proves competitive in both mean square error and mean angle error, with no single method proving superior in every metric.
publishDate 2019
dc.date.none.fl_str_mv 2019-04-22T13:48:57Z
2019-02-05
2019-02-05T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.8/3927
TID:202227057
url http://hdl.handle.net/10400.8/3927
identifier_str_mv TID:202227057
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136972830146560