Epileptic seizure prediction using machine learning techniques
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/13643 |
Resumo: | Epileptic seizures affect about 1% of the world’s population, thus making it the fourth most common neurological disease, this disease is considered a neurological disorder characterized by the abnormal activity of the brain. Part of the population suffering from this disease is unable to avail themselves of any treatment, as this treatment has no beneficial effect on the patient. One of the main concerns associated with this disease is the damage caused by uncontrollable seizures. This damage affects not only the patient himself but also the people around him. With this situation in mind, the goal of this thesis is, through methods of Machine Learning, to create an algorithm that can predict epileptic seizures before they occur. To predict these seizures, the electroencephalogram (EEG) will be employed, since it is the most commonly used method for diagnosing epilepsy. Of the total 23 channels available, only 8 will be used, due to their location. When a seizure occurs, besides the visible changes in the EEG signal, at the moment of the seizure, the alterations before and after the epileptic seizure are also noticeable. These stages have been named in the literature: • Preictal: the moment before the epileptic seizure; • Ictal: the moment of the seizure; • Postictal: the moment after the seizure; • Interictal: space of time between seizures. The goal of the predictive algorithm will be to classify the different classes and study different classification problems by using supervised learning techniques, more precisely a classifier. By performing this classification when indications are detected that a possible epileptic seizure will occur, the patient will then be warned so that he can prepare for the seizure. |
id |
RCAP_ecc547ed7f92a017f0749ff158fac1dc |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/13643 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Epileptic seizure prediction using machine learning techniquesEegEpilepsiaMachine LearningPrevisão de AtaquesDomínio/Área Científica::Engenharia e Tecnologia::BioengenhariaEpileptic seizures affect about 1% of the world’s population, thus making it the fourth most common neurological disease, this disease is considered a neurological disorder characterized by the abnormal activity of the brain. Part of the population suffering from this disease is unable to avail themselves of any treatment, as this treatment has no beneficial effect on the patient. One of the main concerns associated with this disease is the damage caused by uncontrollable seizures. This damage affects not only the patient himself but also the people around him. With this situation in mind, the goal of this thesis is, through methods of Machine Learning, to create an algorithm that can predict epileptic seizures before they occur. To predict these seizures, the electroencephalogram (EEG) will be employed, since it is the most commonly used method for diagnosing epilepsy. Of the total 23 channels available, only 8 will be used, due to their location. When a seizure occurs, besides the visible changes in the EEG signal, at the moment of the seizure, the alterations before and after the epileptic seizure are also noticeable. These stages have been named in the literature: • Preictal: the moment before the epileptic seizure; • Ictal: the moment of the seizure; • Postictal: the moment after the seizure; • Interictal: space of time between seizures. The goal of the predictive algorithm will be to classify the different classes and study different classification problems by using supervised learning techniques, more precisely a classifier. By performing this classification when indications are detected that a possible epileptic seizure will occur, the patient will then be warned so that he can prepare for the seizure.Crises epiléticas afetam cerca de 1% da população mundial, tornando-a assim a quarta doença neurológica mais comum. Esta é considerada uma doença caracterizada pela atividade anormal do cérebro. Parte da população que sofre desta condição não consegue recorrer a qualquer tratamento, pois este não apresenta qualquer efeito benéfico no paciente. Uma das principais preocupações associadas com este problema são os danos causados pelas convulsões imprevisíveis. Estes danos não afetam somente o próprio paciente, como também as pessoas que o rodeiam. Com esta situação em mente, o objetivo desta dissertação consiste em, através de métodos de Machine Learning, criar um algoritmo capaz de prever as crises epiléticas antes da sua ocorrência. Para proceder à previsão destas convulsões, será utilizado o eletroencefalograma (EEG), uma vez que é o método mais usado para o diagnóstico de epilepsia. Serão utilizados apenas 8 dos 23 canais disponíveis, devido à sua localização. Quando ocorre uma crise, além das alterações visíveis no sinal EEG, não só no momento da crise, são também notáveis alterações antes e após a convulsão. A estas fases a literatura nomeou: • Pre-ictal: momento anterior à crise epilética; • Ictal: momento da convulsão; • Pós-ictal: momento posterior à crise; • Interictal: espaço de tempo entre convulsões. O objetivo do algoritmo preditivo será fazer a classificação das diferentes classes e o estudo de diferentes problemas de classificação, através do uso de técnicas de machine learning, mais precisamente um classificador. Ao realizar esta classificação, quando forem detetados indícios de que uma possível crise epilética irá ocorrer, o paciente será então avisado, podendo assim preparar-se para esta.Santos, Nuno Manuel Garcia dosFelizardo, Virginie dos SantosPourvahab, MehranuBibliorumSalvador, Carolina Duarte2023-11-10T14:39:41Z2023-07-202023-06-122023-07-20T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/13643TID:203382935enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-31T02:31:59Zoai:ubibliorum.ubi.pt:10400.6/13643Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:53:02.320364Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Epileptic seizure prediction using machine learning techniques |
title |
Epileptic seizure prediction using machine learning techniques |
spellingShingle |
Epileptic seizure prediction using machine learning techniques Salvador, Carolina Duarte Eeg Epilepsia Machine Learning Previsão de Ataques Domínio/Área Científica::Engenharia e Tecnologia::Bioengenharia |
title_short |
Epileptic seizure prediction using machine learning techniques |
title_full |
Epileptic seizure prediction using machine learning techniques |
title_fullStr |
Epileptic seizure prediction using machine learning techniques |
title_full_unstemmed |
Epileptic seizure prediction using machine learning techniques |
title_sort |
Epileptic seizure prediction using machine learning techniques |
author |
Salvador, Carolina Duarte |
author_facet |
Salvador, Carolina Duarte |
author_role |
author |
dc.contributor.none.fl_str_mv |
Santos, Nuno Manuel Garcia dos Felizardo, Virginie dos Santos Pourvahab, Mehran uBibliorum |
dc.contributor.author.fl_str_mv |
Salvador, Carolina Duarte |
dc.subject.por.fl_str_mv |
Eeg Epilepsia Machine Learning Previsão de Ataques Domínio/Área Científica::Engenharia e Tecnologia::Bioengenharia |
topic |
Eeg Epilepsia Machine Learning Previsão de Ataques Domínio/Área Científica::Engenharia e Tecnologia::Bioengenharia |
description |
Epileptic seizures affect about 1% of the world’s population, thus making it the fourth most common neurological disease, this disease is considered a neurological disorder characterized by the abnormal activity of the brain. Part of the population suffering from this disease is unable to avail themselves of any treatment, as this treatment has no beneficial effect on the patient. One of the main concerns associated with this disease is the damage caused by uncontrollable seizures. This damage affects not only the patient himself but also the people around him. With this situation in mind, the goal of this thesis is, through methods of Machine Learning, to create an algorithm that can predict epileptic seizures before they occur. To predict these seizures, the electroencephalogram (EEG) will be employed, since it is the most commonly used method for diagnosing epilepsy. Of the total 23 channels available, only 8 will be used, due to their location. When a seizure occurs, besides the visible changes in the EEG signal, at the moment of the seizure, the alterations before and after the epileptic seizure are also noticeable. These stages have been named in the literature: • Preictal: the moment before the epileptic seizure; • Ictal: the moment of the seizure; • Postictal: the moment after the seizure; • Interictal: space of time between seizures. The goal of the predictive algorithm will be to classify the different classes and study different classification problems by using supervised learning techniques, more precisely a classifier. By performing this classification when indications are detected that a possible epileptic seizure will occur, the patient will then be warned so that he can prepare for the seizure. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-10T14:39:41Z 2023-07-20 2023-06-12 2023-07-20T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/13643 TID:203382935 |
url |
http://hdl.handle.net/10400.6/13643 |
identifier_str_mv |
TID:203382935 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136418434383872 |