Low-Cost Indoor Localisation Based on Inertial Sensors, Wi-Fi and Sound
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/130418 |
Resumo: | The average life expectancy has been increasing in the last decades, creating the need for new technologies to improve the quality of life of the elderly. In the Ambient Assisted Living scope, indoor location systems emerged as a promising technology capable of sup porting the elderly, providing them a safer environment to live in, and promoting their autonomy. Current indoor location technologies are divided into two categories, depend ing on their need for additional infrastructure. Infrastructure-based solutions require expensive deployment and maintenance. On the other hand, most infrastructure-free systems rely on a single source of information, being highly dependent on its availability. Such systems will hardly be deployed in real-life scenarios, as they cannot handle the absence of their source of information. An efficient solution must, thus, guarantee the continuous indoor positioning of the elderly. This work proposes a new room-level low-cost indoor location algorithm. It relies on three information sources: inertial sensors, to reconstruct users’ trajectories; environ mental sound, to exploit the unique characteristics of each home division; and Wi-Fi, to estimate the distance to the Access Point in the neighbourhood. Two data collection protocols were designed to resemble a real living scenario, and a data processing stage was applied to the collected data. Then, each source was used to train individual Ma chine Learning (including Deep Learning) algorithms to identify room-level positions. As each source provides different information to the classification, the data were merged to produce a more robust localization. Three data fusion approaches (input-level, early, and late fusion) were implemented for this goal, providing a final output containing complementary contributions from all data sources. Experimental results show that the performance improved when more than one source was used, attaining a weighted F1-score of 81.8% in the localization between seven home divisions. In conclusion, the evaluation of the developed algorithm shows that it can achieve accurate room-level indoor localization, being, thus, suitable to be applied in Ambient Assisted Living scenarios. |
id |
RCAP_ece66c696561bdd59e058630cff66cb4 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/130418 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Low-Cost Indoor Localisation Based on Inertial Sensors, Wi-Fi and SoundAmbient Assisted LivingIndoor locationMachine LearningDeep LearningData FusionDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasThe average life expectancy has been increasing in the last decades, creating the need for new technologies to improve the quality of life of the elderly. In the Ambient Assisted Living scope, indoor location systems emerged as a promising technology capable of sup porting the elderly, providing them a safer environment to live in, and promoting their autonomy. Current indoor location technologies are divided into two categories, depend ing on their need for additional infrastructure. Infrastructure-based solutions require expensive deployment and maintenance. On the other hand, most infrastructure-free systems rely on a single source of information, being highly dependent on its availability. Such systems will hardly be deployed in real-life scenarios, as they cannot handle the absence of their source of information. An efficient solution must, thus, guarantee the continuous indoor positioning of the elderly. This work proposes a new room-level low-cost indoor location algorithm. It relies on three information sources: inertial sensors, to reconstruct users’ trajectories; environ mental sound, to exploit the unique characteristics of each home division; and Wi-Fi, to estimate the distance to the Access Point in the neighbourhood. Two data collection protocols were designed to resemble a real living scenario, and a data processing stage was applied to the collected data. Then, each source was used to train individual Ma chine Learning (including Deep Learning) algorithms to identify room-level positions. As each source provides different information to the classification, the data were merged to produce a more robust localization. Three data fusion approaches (input-level, early, and late fusion) were implemented for this goal, providing a final output containing complementary contributions from all data sources. Experimental results show that the performance improved when more than one source was used, attaining a weighted F1-score of 81.8% in the localization between seven home divisions. In conclusion, the evaluation of the developed algorithm shows that it can achieve accurate room-level indoor localization, being, thus, suitable to be applied in Ambient Assisted Living scenarios.O aumento da esperança média de vida nas últimas décadas, criou a necessidade de desenvolvimento de tecnologias que permitam melhorar a qualidade de vida dos idosos. No âmbito da Assistência à Autonomia no Domicílio, sistemas de localização indoor têm emergido como uma tecnologia promissora capaz de acompanhar os idosos e as suas atividades, proporcionando-lhes um ambiente seguro e promovendo a sua autonomia. As tecnologias de localização indoor atuais podem ser divididas em duas categorias, aquelas que necessitam de infrastruturas adicionais e aquelas que não. Sistemas dependentes de infrastrutura necessitam de implementação e manutenção que são muitas vezes dispendiosas. Por outro lado, a maioria das soluções que não requerem infrastrutura, dependem de apenas uma fonte de informação, sendo crucial a sua disponibilidade. Um sistema que não consegue lidar com a falta de informação de um sensor dificilmente será implementado em cenários reais. Uma solução eficiente deverá assim garantir o acompanhamento contínuo dos idosos. A solução proposta consiste no desenvolvimento de um algoritmo de localização indoor de baixo custo, baseando-se nas seguintes fontes de informação: sensores inerciais, capazes de reconstruir a trajetória do utilizador; som, explorando as características dis tintas de cada divisão da casa; e Wi-Fi, responsável pela estimativa da distância entre o ponto de acesso e o smartphone. Cada fonte sensorial, extraída dos sensores incorpora dos no dispositivo, foi, numa primeira abordagem, individualmente otimizada através de algoritmos de Machine Learning (incluindo Deep Learning). Como os dados das diversas fontes contêm informação diferente acerca das mesmas características do sistema, a sua fusão torna a classificação mais informada e robusta. Com este objetivo, foram implementadas três abordagens de fusão de dados (input data, early and late fusion), fornecendo um resultado final derivado de contribuições complementares de todas as fontes de dados. Os resultados experimentais mostram que o desempenho do algoritmo desenvolvido melhorou com a inclusão de informação multi-sensor, alcançando um valor para F1- score de 81.8% na distinção entre sete divisões domésticas. Concluindo, o algoritmo de localização indoor, combinando informações de três fontes diferentes através de métodos de fusão de dados, alcançou uma localização room-level e está apto para ser aplicado num cenário de Assistência à Autonomia no Domicílio.Gamboa, HugoCarreiro, AndréRUNTeófilo, Ana Filipa Frazão de Almeida2022-01-07T14:44:09Z2021-022021-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/130418enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:09:07Zoai:run.unl.pt:10362/130418Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:46:47.483128Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Low-Cost Indoor Localisation Based on Inertial Sensors, Wi-Fi and Sound |
title |
Low-Cost Indoor Localisation Based on Inertial Sensors, Wi-Fi and Sound |
spellingShingle |
Low-Cost Indoor Localisation Based on Inertial Sensors, Wi-Fi and Sound Teófilo, Ana Filipa Frazão de Almeida Ambient Assisted Living Indoor location Machine Learning Deep Learning Data Fusion Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
title_short |
Low-Cost Indoor Localisation Based on Inertial Sensors, Wi-Fi and Sound |
title_full |
Low-Cost Indoor Localisation Based on Inertial Sensors, Wi-Fi and Sound |
title_fullStr |
Low-Cost Indoor Localisation Based on Inertial Sensors, Wi-Fi and Sound |
title_full_unstemmed |
Low-Cost Indoor Localisation Based on Inertial Sensors, Wi-Fi and Sound |
title_sort |
Low-Cost Indoor Localisation Based on Inertial Sensors, Wi-Fi and Sound |
author |
Teófilo, Ana Filipa Frazão de Almeida |
author_facet |
Teófilo, Ana Filipa Frazão de Almeida |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gamboa, Hugo Carreiro, André RUN |
dc.contributor.author.fl_str_mv |
Teófilo, Ana Filipa Frazão de Almeida |
dc.subject.por.fl_str_mv |
Ambient Assisted Living Indoor location Machine Learning Deep Learning Data Fusion Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
topic |
Ambient Assisted Living Indoor location Machine Learning Deep Learning Data Fusion Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
description |
The average life expectancy has been increasing in the last decades, creating the need for new technologies to improve the quality of life of the elderly. In the Ambient Assisted Living scope, indoor location systems emerged as a promising technology capable of sup porting the elderly, providing them a safer environment to live in, and promoting their autonomy. Current indoor location technologies are divided into two categories, depend ing on their need for additional infrastructure. Infrastructure-based solutions require expensive deployment and maintenance. On the other hand, most infrastructure-free systems rely on a single source of information, being highly dependent on its availability. Such systems will hardly be deployed in real-life scenarios, as they cannot handle the absence of their source of information. An efficient solution must, thus, guarantee the continuous indoor positioning of the elderly. This work proposes a new room-level low-cost indoor location algorithm. It relies on three information sources: inertial sensors, to reconstruct users’ trajectories; environ mental sound, to exploit the unique characteristics of each home division; and Wi-Fi, to estimate the distance to the Access Point in the neighbourhood. Two data collection protocols were designed to resemble a real living scenario, and a data processing stage was applied to the collected data. Then, each source was used to train individual Ma chine Learning (including Deep Learning) algorithms to identify room-level positions. As each source provides different information to the classification, the data were merged to produce a more robust localization. Three data fusion approaches (input-level, early, and late fusion) were implemented for this goal, providing a final output containing complementary contributions from all data sources. Experimental results show that the performance improved when more than one source was used, attaining a weighted F1-score of 81.8% in the localization between seven home divisions. In conclusion, the evaluation of the developed algorithm shows that it can achieve accurate room-level indoor localization, being, thus, suitable to be applied in Ambient Assisted Living scenarios. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02 2021-02-01T00:00:00Z 2022-01-07T14:44:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/130418 |
url |
http://hdl.handle.net/10362/130418 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138070945071104 |