Design of a Single Expansion Ramp Nozzle and Numerical Investigation of Operation at Over­Expanded Conditions

Detalhes bibliográficos
Autor(a) principal: Magalhães, Jorge Filipe Suadate Correia de
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/11705
Resumo: In the present thesis, a single expansion ramp nozzle (SERN) is designed and investigated. A Python algorithm based on the method of characteristics (MOC) is developed, which generates the optimised contour of a 2D supersonic calorically perfect minimum length nozzle (MLN), for ideal shock­free flow expansion, and calculates various flow­field properties within the nozzle. The algorithm results shows good agreement with theoretical background, previous literature and CFD simulations, thus validating the code. An optimised SERN geometry is then designed using the algorithm, operating with an exit Mach number of ME = 4 and a specific heat ratio of ? = 1.4. The optimal geometry is truncated at 40% of its length for viable integration into a vehicle, without significant loss in thrust. A numerical framework is created in ANSYS FLUENT 16.2, and validated by comparison with data from previous experimental investigations conducted on SERN’s. The validated model is then applied to the SERN designed in this study, where various simulations of design and off­design conditions are conducted. The numerical simulations are solved in a steady­state 2D environment, using the density­based solver and the k - e RNG turbulence model. Case A simulates SERN operation at design altitude (22 km) and speed (Mach 4), through nozzle pressure ratios (NPR’s) 133.65 (design), 100, 75, 50 and 25. Near perfect expansion of the gases is achieved at the design NPR. As the NPR is reduced, the flow becomes over­expanded, with the formation of incident shock­waves at the nozzle exit and reflected shock­waves further downstream, reduction of exhaust flow speed and contraction of the exhaust plume. From NPR = 133.65 to NPR = 25, the SERN’s thrust, lift and moments suffer a linear reduction of 81.33%, 80.7% and 81.17%, respectively. Case B simulates SERN operation at off­design speed (Mach 0.4) and altitude (8 km), through NPR’s 4, 5, 6, 8, 10, 12, 15 and 20. Severe over­expanded flow and complex shock­wave patterns are observed, such as the restricted shock separation (RSS) pattern, including separation and reattachment of the main jet to the ramp, formation of a separation bubble on the ramp, a large re­circulation region on the flap, Mach disks, ? shock structures and shock­trains. From NPR = 4 to NPR = 20, the SERN’s thrust, lift and moments varied to some degree, with an overall increase of 38.2%, 5.27% and 42.3% respectively.
id RCAP_ece9bd1a61077c6a9eae42b11320181c
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/11705
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Design of a Single Expansion Ramp Nozzle and Numerical Investigation of Operation at Over­Expanded ConditionsBocal de Rampa de Expansão ÚnicaAlgoritmoAnsys FluentBocal de Comprimento MínimoMétodo das CaracterísticasOnda de ChoqueOtimização do Design de BocalPadrão de Separação de EscoamentoPythonSeparação Sobre­ExpandidoSimulação NuméricaDomínio/Área Científica::Engenharia e Tecnologia::Engenharia AeronáuticaIn the present thesis, a single expansion ramp nozzle (SERN) is designed and investigated. A Python algorithm based on the method of characteristics (MOC) is developed, which generates the optimised contour of a 2D supersonic calorically perfect minimum length nozzle (MLN), for ideal shock­free flow expansion, and calculates various flow­field properties within the nozzle. The algorithm results shows good agreement with theoretical background, previous literature and CFD simulations, thus validating the code. An optimised SERN geometry is then designed using the algorithm, operating with an exit Mach number of ME = 4 and a specific heat ratio of ? = 1.4. The optimal geometry is truncated at 40% of its length for viable integration into a vehicle, without significant loss in thrust. A numerical framework is created in ANSYS FLUENT 16.2, and validated by comparison with data from previous experimental investigations conducted on SERN’s. The validated model is then applied to the SERN designed in this study, where various simulations of design and off­design conditions are conducted. The numerical simulations are solved in a steady­state 2D environment, using the density­based solver and the k - e RNG turbulence model. Case A simulates SERN operation at design altitude (22 km) and speed (Mach 4), through nozzle pressure ratios (NPR’s) 133.65 (design), 100, 75, 50 and 25. Near perfect expansion of the gases is achieved at the design NPR. As the NPR is reduced, the flow becomes over­expanded, with the formation of incident shock­waves at the nozzle exit and reflected shock­waves further downstream, reduction of exhaust flow speed and contraction of the exhaust plume. From NPR = 133.65 to NPR = 25, the SERN’s thrust, lift and moments suffer a linear reduction of 81.33%, 80.7% and 81.17%, respectively. Case B simulates SERN operation at off­design speed (Mach 0.4) and altitude (8 km), through NPR’s 4, 5, 6, 8, 10, 12, 15 and 20. Severe over­expanded flow and complex shock­wave patterns are observed, such as the restricted shock separation (RSS) pattern, including separation and reattachment of the main jet to the ramp, formation of a separation bubble on the ramp, a large re­circulation region on the flap, Mach disks, ? shock structures and shock­trains. From NPR = 4 to NPR = 20, the SERN’s thrust, lift and moments varied to some degree, with an overall increase of 38.2%, 5.27% and 42.3% respectively.Na presente tese, um bocal de rampa de expansão única (SERN) é projetado e investigado. Um algoritmo de Python baseado no método das características é desenvolvido, o qual calcula o contorno otimizado de um bocal 2D supersónico caloricamente perfeito de comprimento mínimo, para expansão ideal dos gases, sem choques. Além disso, calcula também várias propriedades do escoamento no interior do bocal. Os resultados do algoritmo são coroborados pelos fundamentos teóricos, literatura prévia e simulações CFD, validando assim o código. A geometria otimizada de um SERN (com um Mach à saída de ME = 4 e um coeficiente de expansão adiabática de ? = 1, 4) é então obtida com recurso ao algoritmo, e truncada a 40% do seu comprimento sem perda significativa de tração, para integração viável num veículo. Um modelo numérico foi criado em ANSYS FLUENT 16.2, e validado com dados de uma prévia investigação experimental efetuada em SERN’s. O modelo validado foi então aplicado ao SERN projetado neste estudo, onde várias simulações foram efetuadas em diferentes condições de operação. As simulações numéricas são resolvidas em regime permanente, 2D, utilizando o solver baseado em densidade e o modelo de turbulência k-e RNG. O Caso A simula a operação do SERN à altitude (22 km) e velocidade (Mach 4) de projeto, variando a razão de pressão do bocal (NPR) de 133,65 (projeto), 100, 75, 50 e 25. Ao NPR de projeto, observa­se uma expansão quase perfeita dos gases. À medida que o NPR é reduzido, a escoamento torna­se sobre­expandido, com a formação de ondas de choque incidentes à saída do bocal e ondas de choque refletidas a jusante, redução da velocidade do escoamento e contração da pluma do jato. Entre os NPR’s 133,65 a 25, a tração, sustentação e momentos do SERN sofrem uma redução linear de 81,33%, 80,7% e 81,17%, respetivamente. O Caso B simula a operação do SERN a uma velocidade (0.4 Mach) e altitude (8 km) fora do ponto de projeto, variando o NPR de 4, 5, 6, 8, 10, 12, 15 até 20. Observa­se extrema sobre­expansão do escoamento e padrões de ondas de choque complexos, tais como o padrão de separação de choque restrito (RSS), incluindo a formação de uma bolha de recirculação na rampa, entre os pontos de separação e religação do jato principal, uma grande região de recirculação no flap, discos de Mach, estruturas de choque ? e cadeias de choque. Entre os NPR’s 4 a 20, a tração, sustentação e momentos do SERN sofrem uma certa variação, com um aumento global de 38,2%, 5,27% e 42,3%, respetivamente.Brojo, Francisco Miguel Ribeiro ProençauBibliorumMagalhães, Jorge Filipe Suadate Correia de2022-01-12T15:15:55Z2021-11-022021-07-302021-11-02T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/11705TID:202847500enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:54:24Zoai:ubibliorum.ubi.pt:10400.6/11705Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:51:25.943173Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Design of a Single Expansion Ramp Nozzle and Numerical Investigation of Operation at Over­Expanded Conditions
title Design of a Single Expansion Ramp Nozzle and Numerical Investigation of Operation at Over­Expanded Conditions
spellingShingle Design of a Single Expansion Ramp Nozzle and Numerical Investigation of Operation at Over­Expanded Conditions
Magalhães, Jorge Filipe Suadate Correia de
Bocal de Rampa de Expansão Única
Algoritmo
Ansys Fluent
Bocal de Comprimento Mínimo
Método das Características
Onda de Choque
Otimização do Design de Bocal
Padrão de Separação de Escoamento
Python
Separação Sobre­Expandido
Simulação Numérica
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
title_short Design of a Single Expansion Ramp Nozzle and Numerical Investigation of Operation at Over­Expanded Conditions
title_full Design of a Single Expansion Ramp Nozzle and Numerical Investigation of Operation at Over­Expanded Conditions
title_fullStr Design of a Single Expansion Ramp Nozzle and Numerical Investigation of Operation at Over­Expanded Conditions
title_full_unstemmed Design of a Single Expansion Ramp Nozzle and Numerical Investigation of Operation at Over­Expanded Conditions
title_sort Design of a Single Expansion Ramp Nozzle and Numerical Investigation of Operation at Over­Expanded Conditions
author Magalhães, Jorge Filipe Suadate Correia de
author_facet Magalhães, Jorge Filipe Suadate Correia de
author_role author
dc.contributor.none.fl_str_mv Brojo, Francisco Miguel Ribeiro Proença
uBibliorum
dc.contributor.author.fl_str_mv Magalhães, Jorge Filipe Suadate Correia de
dc.subject.por.fl_str_mv Bocal de Rampa de Expansão Única
Algoritmo
Ansys Fluent
Bocal de Comprimento Mínimo
Método das Características
Onda de Choque
Otimização do Design de Bocal
Padrão de Separação de Escoamento
Python
Separação Sobre­Expandido
Simulação Numérica
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
topic Bocal de Rampa de Expansão Única
Algoritmo
Ansys Fluent
Bocal de Comprimento Mínimo
Método das Características
Onda de Choque
Otimização do Design de Bocal
Padrão de Separação de Escoamento
Python
Separação Sobre­Expandido
Simulação Numérica
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
description In the present thesis, a single expansion ramp nozzle (SERN) is designed and investigated. A Python algorithm based on the method of characteristics (MOC) is developed, which generates the optimised contour of a 2D supersonic calorically perfect minimum length nozzle (MLN), for ideal shock­free flow expansion, and calculates various flow­field properties within the nozzle. The algorithm results shows good agreement with theoretical background, previous literature and CFD simulations, thus validating the code. An optimised SERN geometry is then designed using the algorithm, operating with an exit Mach number of ME = 4 and a specific heat ratio of ? = 1.4. The optimal geometry is truncated at 40% of its length for viable integration into a vehicle, without significant loss in thrust. A numerical framework is created in ANSYS FLUENT 16.2, and validated by comparison with data from previous experimental investigations conducted on SERN’s. The validated model is then applied to the SERN designed in this study, where various simulations of design and off­design conditions are conducted. The numerical simulations are solved in a steady­state 2D environment, using the density­based solver and the k - e RNG turbulence model. Case A simulates SERN operation at design altitude (22 km) and speed (Mach 4), through nozzle pressure ratios (NPR’s) 133.65 (design), 100, 75, 50 and 25. Near perfect expansion of the gases is achieved at the design NPR. As the NPR is reduced, the flow becomes over­expanded, with the formation of incident shock­waves at the nozzle exit and reflected shock­waves further downstream, reduction of exhaust flow speed and contraction of the exhaust plume. From NPR = 133.65 to NPR = 25, the SERN’s thrust, lift and moments suffer a linear reduction of 81.33%, 80.7% and 81.17%, respectively. Case B simulates SERN operation at off­design speed (Mach 0.4) and altitude (8 km), through NPR’s 4, 5, 6, 8, 10, 12, 15 and 20. Severe over­expanded flow and complex shock­wave patterns are observed, such as the restricted shock separation (RSS) pattern, including separation and reattachment of the main jet to the ramp, formation of a separation bubble on the ramp, a large re­circulation region on the flap, Mach disks, ? shock structures and shock­trains. From NPR = 4 to NPR = 20, the SERN’s thrust, lift and moments varied to some degree, with an overall increase of 38.2%, 5.27% and 42.3% respectively.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-02
2021-07-30
2021-11-02T00:00:00Z
2022-01-12T15:15:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/11705
TID:202847500
url http://hdl.handle.net/10400.6/11705
identifier_str_mv TID:202847500
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136403475398656