Discovering Patterns in Online Reviews of Beijing and Lisbon Hostels
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/146061 |
Resumo: | Brochado, A., Rita, P., & Moro, S. (2019). Discovering Patterns in Online Reviews of Beijing and Lisbon Hostels. Journal of China Tourism Research, 15(2), 172-191. https://doi.org/10.1080/19388160.2018.1543065 |
id |
RCAP_ed1b839205c7a7d5e82444d9e1f2cbae |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/146061 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Discovering Patterns in Online Reviews of Beijing and Lisbon HostelsBeijingdata mininghostelsLisbononline reviewsService qualityCultural StudiesLanguage and LinguisticsLinguistics and LanguageTourism, Leisure and Hospitality ManagementBrochado, A., Rita, P., & Moro, S. (2019). Discovering Patterns in Online Reviews of Beijing and Lisbon Hostels. Journal of China Tourism Research, 15(2), 172-191. https://doi.org/10.1080/19388160.2018.1543065This study employed a data mining approach to model the quantitative scores given to hostels located in Beijing, China, and Lisbon, Portugal, in guests’ online reviews posted on Booking.com. A neural network was built using a total of nine input features (e.g. age, most and least favorite aspects, travel and traveler types, nationality, hostel, and month and weekday of review) to model the score distributions. Each feature’s contribution to the scores was then extracted through data-based sensitivity analysis. The most favorite aspect and continent of origin were the two most significant features for hostels in both cities. Lisbon guests were also highly influenced by the hostel itself and traveler type as compared with Beijing travelers. Notably, facilities are the most favorite aspect valued by guests staying in Lisbon, while those that stay in Beijing hostels give more importance to value for money. These findings denote different guest behaviors are associated with each city’s particular offerings.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNBrochado, AnaRita, PauloMoro, Sérgio2022-12-07T22:06:31Z2019-04-012019-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article20application/pdfhttp://hdl.handle.net/10362/146061eng1938-8160PURE: 6600713https://doi.org/10.1080/19388160.2018.1543065info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:27:01Zoai:run.unl.pt:10362/146061Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:52:27.331141Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Discovering Patterns in Online Reviews of Beijing and Lisbon Hostels |
title |
Discovering Patterns in Online Reviews of Beijing and Lisbon Hostels |
spellingShingle |
Discovering Patterns in Online Reviews of Beijing and Lisbon Hostels Brochado, Ana Beijing data mining hostels Lisbon online reviews Service quality Cultural Studies Language and Linguistics Linguistics and Language Tourism, Leisure and Hospitality Management |
title_short |
Discovering Patterns in Online Reviews of Beijing and Lisbon Hostels |
title_full |
Discovering Patterns in Online Reviews of Beijing and Lisbon Hostels |
title_fullStr |
Discovering Patterns in Online Reviews of Beijing and Lisbon Hostels |
title_full_unstemmed |
Discovering Patterns in Online Reviews of Beijing and Lisbon Hostels |
title_sort |
Discovering Patterns in Online Reviews of Beijing and Lisbon Hostels |
author |
Brochado, Ana |
author_facet |
Brochado, Ana Rita, Paulo Moro, Sérgio |
author_role |
author |
author2 |
Rita, Paulo Moro, Sérgio |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Brochado, Ana Rita, Paulo Moro, Sérgio |
dc.subject.por.fl_str_mv |
Beijing data mining hostels Lisbon online reviews Service quality Cultural Studies Language and Linguistics Linguistics and Language Tourism, Leisure and Hospitality Management |
topic |
Beijing data mining hostels Lisbon online reviews Service quality Cultural Studies Language and Linguistics Linguistics and Language Tourism, Leisure and Hospitality Management |
description |
Brochado, A., Rita, P., & Moro, S. (2019). Discovering Patterns in Online Reviews of Beijing and Lisbon Hostels. Journal of China Tourism Research, 15(2), 172-191. https://doi.org/10.1080/19388160.2018.1543065 |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04-01 2019-04-01T00:00:00Z 2022-12-07T22:06:31Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/146061 |
url |
http://hdl.handle.net/10362/146061 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1938-8160 PURE: 6600713 https://doi.org/10.1080/19388160.2018.1543065 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
20 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138115813638144 |