EWOk: towards efficient multidimensional compression of indoor positioning datasets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/86249 |
Resumo: | Indoor positioning performed directly at the end-user device ensures reliability in case the network connection fails but is limited by the size of the RSS radio map necessary to match the measured array to the device’s location. Reducing the size of the RSS database enables faster processing, and saves storage space and radio resources necessary for the database transfer, thus cutting implementation and operation costs, and increasing the quality of service. In this work, we propose EWOk, an Element-Wise cOmpression using k-means, which reduces the size of the individual radio measurements within the fingerprinting radio map while sustaining or boosting the dataset’s positioning capabilities. We show that the 7-bit representation of measurements is sufficient in positioning scenarios, and reducing the data size further using EWOk results in higher compression and faster data transfer and processing. To eliminate the inherent uncertainty of k-means we propose a data-dependent, non-random initiation scheme to ensure stability and limit variance. We further combine EWOk with principal component analysis to show its applicability in combination with other methods, and to demonstrate the efficiency of the resulting multidimensional compression. We evaluate EWOk on 25 RSS fingerprinting datasets and show that it positively impacts compression efficiency, and positioning performance. |
id |
RCAP_ed47c4f7edbcf25fec121499e17e8324 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/86249 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
EWOk: towards efficient multidimensional compression of indoor positioning datasetsDatabasesFingerprint recognitionLocation awarenessPerformance evaluationPrediction algorithmsTrainingWireless fidelityIndoor positioning performed directly at the end-user device ensures reliability in case the network connection fails but is limited by the size of the RSS radio map necessary to match the measured array to the device’s location. Reducing the size of the RSS database enables faster processing, and saves storage space and radio resources necessary for the database transfer, thus cutting implementation and operation costs, and increasing the quality of service. In this work, we propose EWOk, an Element-Wise cOmpression using k-means, which reduces the size of the individual radio measurements within the fingerprinting radio map while sustaining or boosting the dataset’s positioning capabilities. We show that the 7-bit representation of measurements is sufficient in positioning scenarios, and reducing the data size further using EWOk results in higher compression and faster data transfer and processing. To eliminate the inherent uncertainty of k-means we propose a data-dependent, non-random initiation scheme to ensure stability and limit variance. We further combine EWOk with principal component analysis to show its applicability in combination with other methods, and to demonstrate the efficiency of the resulting multidimensional compression. We evaluate EWOk on 25 RSS fingerprinting datasets and show that it positively impacts compression efficiency, and positioning performance.This work was supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska Curie grant agreements No. 813278 (A-WEAR: A network for dynamic wearable applications with privacy constraints, http://www.a-wear.eu/) and No. 101023072 (ORIENTATE: Low-cost Reliable Indoor Positioning in Smart Factories, http://orientate.dsi.uminho.pt) and Academy of Finland (grants #319994, #323244).Institute of Electrical and Electronics Engineers (IEEE)Universidade do MinhoKlus, LucieKlus, RomanTorres-Sospedra, JoaquínLohanll, Elena SimonaGranell, CarlosNurmi, Jari20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/86249eng1536-12331558-066010.1109/TMC.2023.3277333https://ieeexplore.ieee.org/document/10128720info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-02T01:20:46Zoai:repositorium.sdum.uminho.pt:1822/86249Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:28:02.424769Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
EWOk: towards efficient multidimensional compression of indoor positioning datasets |
title |
EWOk: towards efficient multidimensional compression of indoor positioning datasets |
spellingShingle |
EWOk: towards efficient multidimensional compression of indoor positioning datasets Klus, Lucie Databases Fingerprint recognition Location awareness Performance evaluation Prediction algorithms Training Wireless fidelity |
title_short |
EWOk: towards efficient multidimensional compression of indoor positioning datasets |
title_full |
EWOk: towards efficient multidimensional compression of indoor positioning datasets |
title_fullStr |
EWOk: towards efficient multidimensional compression of indoor positioning datasets |
title_full_unstemmed |
EWOk: towards efficient multidimensional compression of indoor positioning datasets |
title_sort |
EWOk: towards efficient multidimensional compression of indoor positioning datasets |
author |
Klus, Lucie |
author_facet |
Klus, Lucie Klus, Roman Torres-Sospedra, Joaquín Lohanll, Elena Simona Granell, Carlos Nurmi, Jari |
author_role |
author |
author2 |
Klus, Roman Torres-Sospedra, Joaquín Lohanll, Elena Simona Granell, Carlos Nurmi, Jari |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Klus, Lucie Klus, Roman Torres-Sospedra, Joaquín Lohanll, Elena Simona Granell, Carlos Nurmi, Jari |
dc.subject.por.fl_str_mv |
Databases Fingerprint recognition Location awareness Performance evaluation Prediction algorithms Training Wireless fidelity |
topic |
Databases Fingerprint recognition Location awareness Performance evaluation Prediction algorithms Training Wireless fidelity |
description |
Indoor positioning performed directly at the end-user device ensures reliability in case the network connection fails but is limited by the size of the RSS radio map necessary to match the measured array to the device’s location. Reducing the size of the RSS database enables faster processing, and saves storage space and radio resources necessary for the database transfer, thus cutting implementation and operation costs, and increasing the quality of service. In this work, we propose EWOk, an Element-Wise cOmpression using k-means, which reduces the size of the individual radio measurements within the fingerprinting radio map while sustaining or boosting the dataset’s positioning capabilities. We show that the 7-bit representation of measurements is sufficient in positioning scenarios, and reducing the data size further using EWOk results in higher compression and faster data transfer and processing. To eliminate the inherent uncertainty of k-means we propose a data-dependent, non-random initiation scheme to ensure stability and limit variance. We further combine EWOk with principal component analysis to show its applicability in combination with other methods, and to demonstrate the efficiency of the resulting multidimensional compression. We evaluate EWOk on 25 RSS fingerprinting datasets and show that it positively impacts compression efficiency, and positioning performance. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 2023-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/86249 |
url |
https://hdl.handle.net/1822/86249 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1536-1233 1558-0660 10.1109/TMC.2023.3277333 https://ieeexplore.ieee.org/document/10128720 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers (IEEE) |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers (IEEE) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133548295225344 |