EWOk: towards efficient multidimensional compression of indoor positioning datasets

Detalhes bibliográficos
Autor(a) principal: Klus, Lucie
Data de Publicação: 2023
Outros Autores: Klus, Roman, Torres-Sospedra, Joaquín, Lohanll, Elena Simona, Granell, Carlos, Nurmi, Jari
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/86249
Resumo: Indoor positioning performed directly at the end-user device ensures reliability in case the network connection fails but is limited by the size of the RSS radio map necessary to match the measured array to the device’s location. Reducing the size of the RSS database enables faster processing, and saves storage space and radio resources necessary for the database transfer, thus cutting implementation and operation costs, and increasing the quality of service. In this work, we propose EWOk, an Element-Wise cOmpression using k-means, which reduces the size of the individual radio measurements within the fingerprinting radio map while sustaining or boosting the dataset’s positioning capabilities. We show that the 7-bit representation of measurements is sufficient in positioning scenarios, and reducing the data size further using EWOk results in higher compression and faster data transfer and processing. To eliminate the inherent uncertainty of k-means we propose a data-dependent, non-random initiation scheme to ensure stability and limit variance. We further combine EWOk with principal component analysis to show its applicability in combination with other methods, and to demonstrate the efficiency of the resulting multidimensional compression. We evaluate EWOk on 25 RSS fingerprinting datasets and show that it positively impacts compression efficiency, and positioning performance.
id RCAP_ed47c4f7edbcf25fec121499e17e8324
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/86249
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling EWOk: towards efficient multidimensional compression of indoor positioning datasetsDatabasesFingerprint recognitionLocation awarenessPerformance evaluationPrediction algorithmsTrainingWireless fidelityIndoor positioning performed directly at the end-user device ensures reliability in case the network connection fails but is limited by the size of the RSS radio map necessary to match the measured array to the device’s location. Reducing the size of the RSS database enables faster processing, and saves storage space and radio resources necessary for the database transfer, thus cutting implementation and operation costs, and increasing the quality of service. In this work, we propose EWOk, an Element-Wise cOmpression using k-means, which reduces the size of the individual radio measurements within the fingerprinting radio map while sustaining or boosting the dataset’s positioning capabilities. We show that the 7-bit representation of measurements is sufficient in positioning scenarios, and reducing the data size further using EWOk results in higher compression and faster data transfer and processing. To eliminate the inherent uncertainty of k-means we propose a data-dependent, non-random initiation scheme to ensure stability and limit variance. We further combine EWOk with principal component analysis to show its applicability in combination with other methods, and to demonstrate the efficiency of the resulting multidimensional compression. We evaluate EWOk on 25 RSS fingerprinting datasets and show that it positively impacts compression efficiency, and positioning performance.This work was supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska Curie grant agreements No. 813278 (A-WEAR: A network for dynamic wearable applications with privacy constraints, http://www.a-wear.eu/) and No. 101023072 (ORIENTATE: Low-cost Reliable Indoor Positioning in Smart Factories, http://orientate.dsi.uminho.pt) and Academy of Finland (grants #319994, #323244).Institute of Electrical and Electronics Engineers (IEEE)Universidade do MinhoKlus, LucieKlus, RomanTorres-Sospedra, JoaquínLohanll, Elena SimonaGranell, CarlosNurmi, Jari20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/86249eng1536-12331558-066010.1109/TMC.2023.3277333https://ieeexplore.ieee.org/document/10128720info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-02T01:20:46Zoai:repositorium.sdum.uminho.pt:1822/86249Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:28:02.424769Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv EWOk: towards efficient multidimensional compression of indoor positioning datasets
title EWOk: towards efficient multidimensional compression of indoor positioning datasets
spellingShingle EWOk: towards efficient multidimensional compression of indoor positioning datasets
Klus, Lucie
Databases
Fingerprint recognition
Location awareness
Performance evaluation
Prediction algorithms
Training
Wireless fidelity
title_short EWOk: towards efficient multidimensional compression of indoor positioning datasets
title_full EWOk: towards efficient multidimensional compression of indoor positioning datasets
title_fullStr EWOk: towards efficient multidimensional compression of indoor positioning datasets
title_full_unstemmed EWOk: towards efficient multidimensional compression of indoor positioning datasets
title_sort EWOk: towards efficient multidimensional compression of indoor positioning datasets
author Klus, Lucie
author_facet Klus, Lucie
Klus, Roman
Torres-Sospedra, Joaquín
Lohanll, Elena Simona
Granell, Carlos
Nurmi, Jari
author_role author
author2 Klus, Roman
Torres-Sospedra, Joaquín
Lohanll, Elena Simona
Granell, Carlos
Nurmi, Jari
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Klus, Lucie
Klus, Roman
Torres-Sospedra, Joaquín
Lohanll, Elena Simona
Granell, Carlos
Nurmi, Jari
dc.subject.por.fl_str_mv Databases
Fingerprint recognition
Location awareness
Performance evaluation
Prediction algorithms
Training
Wireless fidelity
topic Databases
Fingerprint recognition
Location awareness
Performance evaluation
Prediction algorithms
Training
Wireless fidelity
description Indoor positioning performed directly at the end-user device ensures reliability in case the network connection fails but is limited by the size of the RSS radio map necessary to match the measured array to the device’s location. Reducing the size of the RSS database enables faster processing, and saves storage space and radio resources necessary for the database transfer, thus cutting implementation and operation costs, and increasing the quality of service. In this work, we propose EWOk, an Element-Wise cOmpression using k-means, which reduces the size of the individual radio measurements within the fingerprinting radio map while sustaining or boosting the dataset’s positioning capabilities. We show that the 7-bit representation of measurements is sufficient in positioning scenarios, and reducing the data size further using EWOk results in higher compression and faster data transfer and processing. To eliminate the inherent uncertainty of k-means we propose a data-dependent, non-random initiation scheme to ensure stability and limit variance. We further combine EWOk with principal component analysis to show its applicability in combination with other methods, and to demonstrate the efficiency of the resulting multidimensional compression. We evaluate EWOk on 25 RSS fingerprinting datasets and show that it positively impacts compression efficiency, and positioning performance.
publishDate 2023
dc.date.none.fl_str_mv 2023
2023-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/86249
url https://hdl.handle.net/1822/86249
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1536-1233
1558-0660
10.1109/TMC.2023.3277333
https://ieeexplore.ieee.org/document/10128720
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers (IEEE)
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers (IEEE)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133548295225344