Classification and Scoring of Protein Complexes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/76564 |
Resumo: | Proteins interactions mediate all biological systems in a cell; understanding their interactions means understanding the processes responsible for human life. Their structure can be obtained experimentally, but such processes frequently fail at determining structures of protein complexes. To address the issue, computational methods have been developed that attempt to predict the structure of a protein complex, using information of its constituents. These methods, known as docking, generate thousands of possible poses for each complex, and require effective and reliable ways to quickly discriminate the correct pose among the set of incorrect ones. In this thesis, a new scoring function was developed that uses machine learning techniques and features extracted from the structure of the interacting proteins, to correctly classify and rank the putative poses. The developed function has shown to be competitive with current state-of-the-art solutions. |
id |
RCAP_ed4dac414f570c0ede853520e581ae43 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/76564 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Classification and Scoring of Protein ComplexesMachine LearningBioinformaticsProtein-Protein InteractionsDockingDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaProteins interactions mediate all biological systems in a cell; understanding their interactions means understanding the processes responsible for human life. Their structure can be obtained experimentally, but such processes frequently fail at determining structures of protein complexes. To address the issue, computational methods have been developed that attempt to predict the structure of a protein complex, using information of its constituents. These methods, known as docking, generate thousands of possible poses for each complex, and require effective and reliable ways to quickly discriminate the correct pose among the set of incorrect ones. In this thesis, a new scoring function was developed that uses machine learning techniques and features extracted from the structure of the interacting proteins, to correctly classify and rank the putative poses. The developed function has shown to be competitive with current state-of-the-art solutions.Krippahl, LudwigRUNCarneiro, José Miguel Faustino2019-07-26T10:00:11Z2019-0520192019-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/76564enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:34:52Zoai:run.unl.pt:10362/76564Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:35:40.722943Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Classification and Scoring of Protein Complexes |
title |
Classification and Scoring of Protein Complexes |
spellingShingle |
Classification and Scoring of Protein Complexes Carneiro, José Miguel Faustino Machine Learning Bioinformatics Protein-Protein Interactions Docking Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Classification and Scoring of Protein Complexes |
title_full |
Classification and Scoring of Protein Complexes |
title_fullStr |
Classification and Scoring of Protein Complexes |
title_full_unstemmed |
Classification and Scoring of Protein Complexes |
title_sort |
Classification and Scoring of Protein Complexes |
author |
Carneiro, José Miguel Faustino |
author_facet |
Carneiro, José Miguel Faustino |
author_role |
author |
dc.contributor.none.fl_str_mv |
Krippahl, Ludwig RUN |
dc.contributor.author.fl_str_mv |
Carneiro, José Miguel Faustino |
dc.subject.por.fl_str_mv |
Machine Learning Bioinformatics Protein-Protein Interactions Docking Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Machine Learning Bioinformatics Protein-Protein Interactions Docking Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
Proteins interactions mediate all biological systems in a cell; understanding their interactions means understanding the processes responsible for human life. Their structure can be obtained experimentally, but such processes frequently fail at determining structures of protein complexes. To address the issue, computational methods have been developed that attempt to predict the structure of a protein complex, using information of its constituents. These methods, known as docking, generate thousands of possible poses for each complex, and require effective and reliable ways to quickly discriminate the correct pose among the set of incorrect ones. In this thesis, a new scoring function was developed that uses machine learning techniques and features extracted from the structure of the interacting proteins, to correctly classify and rank the putative poses. The developed function has shown to be competitive with current state-of-the-art solutions. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07-26T10:00:11Z 2019-05 2019 2019-05-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/76564 |
url |
http://hdl.handle.net/10362/76564 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137977618661376 |