Classification and Scoring of Protein Complexes

Detalhes bibliográficos
Autor(a) principal: Carneiro, José Miguel Faustino
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/76564
Resumo: Proteins interactions mediate all biological systems in a cell; understanding their interactions means understanding the processes responsible for human life. Their structure can be obtained experimentally, but such processes frequently fail at determining structures of protein complexes. To address the issue, computational methods have been developed that attempt to predict the structure of a protein complex, using information of its constituents. These methods, known as docking, generate thousands of possible poses for each complex, and require effective and reliable ways to quickly discriminate the correct pose among the set of incorrect ones. In this thesis, a new scoring function was developed that uses machine learning techniques and features extracted from the structure of the interacting proteins, to correctly classify and rank the putative poses. The developed function has shown to be competitive with current state-of-the-art solutions.
id RCAP_ed4dac414f570c0ede853520e581ae43
oai_identifier_str oai:run.unl.pt:10362/76564
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Classification and Scoring of Protein ComplexesMachine LearningBioinformaticsProtein-Protein InteractionsDockingDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaProteins interactions mediate all biological systems in a cell; understanding their interactions means understanding the processes responsible for human life. Their structure can be obtained experimentally, but such processes frequently fail at determining structures of protein complexes. To address the issue, computational methods have been developed that attempt to predict the structure of a protein complex, using information of its constituents. These methods, known as docking, generate thousands of possible poses for each complex, and require effective and reliable ways to quickly discriminate the correct pose among the set of incorrect ones. In this thesis, a new scoring function was developed that uses machine learning techniques and features extracted from the structure of the interacting proteins, to correctly classify and rank the putative poses. The developed function has shown to be competitive with current state-of-the-art solutions.Krippahl, LudwigRUNCarneiro, José Miguel Faustino2019-07-26T10:00:11Z2019-0520192019-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/76564enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:34:52Zoai:run.unl.pt:10362/76564Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:35:40.722943Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Classification and Scoring of Protein Complexes
title Classification and Scoring of Protein Complexes
spellingShingle Classification and Scoring of Protein Complexes
Carneiro, José Miguel Faustino
Machine Learning
Bioinformatics
Protein-Protein Interactions
Docking
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Classification and Scoring of Protein Complexes
title_full Classification and Scoring of Protein Complexes
title_fullStr Classification and Scoring of Protein Complexes
title_full_unstemmed Classification and Scoring of Protein Complexes
title_sort Classification and Scoring of Protein Complexes
author Carneiro, José Miguel Faustino
author_facet Carneiro, José Miguel Faustino
author_role author
dc.contributor.none.fl_str_mv Krippahl, Ludwig
RUN
dc.contributor.author.fl_str_mv Carneiro, José Miguel Faustino
dc.subject.por.fl_str_mv Machine Learning
Bioinformatics
Protein-Protein Interactions
Docking
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Machine Learning
Bioinformatics
Protein-Protein Interactions
Docking
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Proteins interactions mediate all biological systems in a cell; understanding their interactions means understanding the processes responsible for human life. Their structure can be obtained experimentally, but such processes frequently fail at determining structures of protein complexes. To address the issue, computational methods have been developed that attempt to predict the structure of a protein complex, using information of its constituents. These methods, known as docking, generate thousands of possible poses for each complex, and require effective and reliable ways to quickly discriminate the correct pose among the set of incorrect ones. In this thesis, a new scoring function was developed that uses machine learning techniques and features extracted from the structure of the interacting proteins, to correctly classify and rank the putative poses. The developed function has shown to be competitive with current state-of-the-art solutions.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-26T10:00:11Z
2019-05
2019
2019-05-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/76564
url http://hdl.handle.net/10362/76564
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137977618661376