Unsupervised density-based behavior change detection in data streams
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://repositorio.inesctec.pt/handle/123456789/3704 http://dx.doi.org/10.3233/ida-140636 |
Resumo: | The ability to detect changes in the data distribution is an important issue in Data Stream mining. Detecting changes in data distribution allows the adaptation of a previously learned model to accommodate the most recent data and, therefore, improve its prediction capability. This paper proposes a framework for non-supervised automatic change detection in Data Streams called M-DBScan. This framework is composed of a density-based clustering step followed by a novelty detection procedure based on entropy level measures. This work uses two different types of entropy measures, where one considers the spatial distribution of data while the other models temporal relations between observations in the stream. The performance of the method is assessed in a set of experiments comparing M-DBScan with a proximity-based approach. Experimental results provide important insight on how to design change detection mechanisms for streams. |
id |
RCAP_ede909d4b80c7560e5bbedc08b744ab8 |
---|---|
oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/3704 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Unsupervised density-based behavior change detection in data streamsThe ability to detect changes in the data distribution is an important issue in Data Stream mining. Detecting changes in data distribution allows the adaptation of a previously learned model to accommodate the most recent data and, therefore, improve its prediction capability. This paper proposes a framework for non-supervised automatic change detection in Data Streams called M-DBScan. This framework is composed of a density-based clustering step followed by a novelty detection procedure based on entropy level measures. This work uses two different types of entropy measures, where one considers the spatial distribution of data while the other models temporal relations between observations in the stream. The performance of the method is assessed in a set of experiments comparing M-DBScan with a proximity-based approach. Experimental results provide important insight on how to design change detection mechanisms for streams.2017-11-20T14:28:18Z2014-01-01T00:00:00Z2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/3704http://dx.doi.org/10.3233/ida-140636engVallim,RMMAndrade Filho,JAde Mello,RFde Carvalho,ACPLFJoão Gamainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:20Zoai:repositorio.inesctec.pt:123456789/3704Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:58.548265Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Unsupervised density-based behavior change detection in data streams |
title |
Unsupervised density-based behavior change detection in data streams |
spellingShingle |
Unsupervised density-based behavior change detection in data streams Vallim,RMM |
title_short |
Unsupervised density-based behavior change detection in data streams |
title_full |
Unsupervised density-based behavior change detection in data streams |
title_fullStr |
Unsupervised density-based behavior change detection in data streams |
title_full_unstemmed |
Unsupervised density-based behavior change detection in data streams |
title_sort |
Unsupervised density-based behavior change detection in data streams |
author |
Vallim,RMM |
author_facet |
Vallim,RMM Andrade Filho,JA de Mello,RF de Carvalho,ACPLF João Gama |
author_role |
author |
author2 |
Andrade Filho,JA de Mello,RF de Carvalho,ACPLF João Gama |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Vallim,RMM Andrade Filho,JA de Mello,RF de Carvalho,ACPLF João Gama |
description |
The ability to detect changes in the data distribution is an important issue in Data Stream mining. Detecting changes in data distribution allows the adaptation of a previously learned model to accommodate the most recent data and, therefore, improve its prediction capability. This paper proposes a framework for non-supervised automatic change detection in Data Streams called M-DBScan. This framework is composed of a density-based clustering step followed by a novelty detection procedure based on entropy level measures. This work uses two different types of entropy measures, where one considers the spatial distribution of data while the other models temporal relations between observations in the stream. The performance of the method is assessed in a set of experiments comparing M-DBScan with a proximity-based approach. Experimental results provide important insight on how to design change detection mechanisms for streams. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01-01T00:00:00Z 2014 2017-11-20T14:28:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/3704 http://dx.doi.org/10.3233/ida-140636 |
url |
http://repositorio.inesctec.pt/handle/123456789/3704 http://dx.doi.org/10.3233/ida-140636 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131604826718208 |