Unsupervised density-based behavior change detection in data streams

Detalhes bibliográficos
Autor(a) principal: Vallim,RMM
Data de Publicação: 2014
Outros Autores: Andrade Filho,JA, de Mello,RF, de Carvalho,ACPLF, João Gama
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/3704
http://dx.doi.org/10.3233/ida-140636
Resumo: The ability to detect changes in the data distribution is an important issue in Data Stream mining. Detecting changes in data distribution allows the adaptation of a previously learned model to accommodate the most recent data and, therefore, improve its prediction capability. This paper proposes a framework for non-supervised automatic change detection in Data Streams called M-DBScan. This framework is composed of a density-based clustering step followed by a novelty detection procedure based on entropy level measures. This work uses two different types of entropy measures, where one considers the spatial distribution of data while the other models temporal relations between observations in the stream. The performance of the method is assessed in a set of experiments comparing M-DBScan with a proximity-based approach. Experimental results provide important insight on how to design change detection mechanisms for streams.
id RCAP_ede909d4b80c7560e5bbedc08b744ab8
oai_identifier_str oai:repositorio.inesctec.pt:123456789/3704
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Unsupervised density-based behavior change detection in data streamsThe ability to detect changes in the data distribution is an important issue in Data Stream mining. Detecting changes in data distribution allows the adaptation of a previously learned model to accommodate the most recent data and, therefore, improve its prediction capability. This paper proposes a framework for non-supervised automatic change detection in Data Streams called M-DBScan. This framework is composed of a density-based clustering step followed by a novelty detection procedure based on entropy level measures. This work uses two different types of entropy measures, where one considers the spatial distribution of data while the other models temporal relations between observations in the stream. The performance of the method is assessed in a set of experiments comparing M-DBScan with a proximity-based approach. Experimental results provide important insight on how to design change detection mechanisms for streams.2017-11-20T14:28:18Z2014-01-01T00:00:00Z2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/3704http://dx.doi.org/10.3233/ida-140636engVallim,RMMAndrade Filho,JAde Mello,RFde Carvalho,ACPLFJoão Gamainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:20Zoai:repositorio.inesctec.pt:123456789/3704Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:58.548265Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Unsupervised density-based behavior change detection in data streams
title Unsupervised density-based behavior change detection in data streams
spellingShingle Unsupervised density-based behavior change detection in data streams
Vallim,RMM
title_short Unsupervised density-based behavior change detection in data streams
title_full Unsupervised density-based behavior change detection in data streams
title_fullStr Unsupervised density-based behavior change detection in data streams
title_full_unstemmed Unsupervised density-based behavior change detection in data streams
title_sort Unsupervised density-based behavior change detection in data streams
author Vallim,RMM
author_facet Vallim,RMM
Andrade Filho,JA
de Mello,RF
de Carvalho,ACPLF
João Gama
author_role author
author2 Andrade Filho,JA
de Mello,RF
de Carvalho,ACPLF
João Gama
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Vallim,RMM
Andrade Filho,JA
de Mello,RF
de Carvalho,ACPLF
João Gama
description The ability to detect changes in the data distribution is an important issue in Data Stream mining. Detecting changes in data distribution allows the adaptation of a previously learned model to accommodate the most recent data and, therefore, improve its prediction capability. This paper proposes a framework for non-supervised automatic change detection in Data Streams called M-DBScan. This framework is composed of a density-based clustering step followed by a novelty detection procedure based on entropy level measures. This work uses two different types of entropy measures, where one considers the spatial distribution of data while the other models temporal relations between observations in the stream. The performance of the method is assessed in a set of experiments comparing M-DBScan with a proximity-based approach. Experimental results provide important insight on how to design change detection mechanisms for streams.
publishDate 2014
dc.date.none.fl_str_mv 2014-01-01T00:00:00Z
2014
2017-11-20T14:28:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/3704
http://dx.doi.org/10.3233/ida-140636
url http://repositorio.inesctec.pt/handle/123456789/3704
http://dx.doi.org/10.3233/ida-140636
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131604826718208