Applying federated learning to a Covid-19 anomaly detection pipeline

Detalhes bibliográficos
Autor(a) principal: Polido, Susana Isabel de Carvalho
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/30191
Resumo: The COVID-19 pandemic of 2020 spread around the world fast, overwhelming healthcare systems and causing millions of deaths all over the globe. Researchers and scientists rushed to find tools to help detect and contain the spread of the disease, including automatic ones powered by machine learning models. Amongst the efforts, several studies focused on exploring differences between biometric signals in people with the disease collected before and after the infection, in search of patterns that can help detect it as soon as possible. In particular, heart rate related signals collected via devices such as smartwatches. These studies have resulted in some detection tools, but they always require users to have data from before the infection occurred in order to be used and often contain personalization based on this healthy data. But what if a new user has not yet collected healthy data? Can a model trained with the data of other individuals successfully detect the illness on a novel one? This work explores that situation by taking an individual based anomaly detection and transporting into a Federated Learning environment in order to see its behavior on the data from individuals that trained the model and novel individuals, including data collected via hospital devices from individuals admitted to the intensive care unit which is unlikely to contain healthy data. Although the resulting models, on average, did not detect more true anomalies than the personalized ones, their performance is similar when applied to the training individuals and novel ones.
id RCAP_ee0f06ca41a3da10b97a7db6ca6f5fde
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/30191
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Applying federated learning to a Covid-19 anomaly detection pipelineAnomaly detectionFederated learningHealth modelMachine learningDeteção de anomaliasAprendizagem federadaModelo na saúdeAprendizagem automáticaThe COVID-19 pandemic of 2020 spread around the world fast, overwhelming healthcare systems and causing millions of deaths all over the globe. Researchers and scientists rushed to find tools to help detect and contain the spread of the disease, including automatic ones powered by machine learning models. Amongst the efforts, several studies focused on exploring differences between biometric signals in people with the disease collected before and after the infection, in search of patterns that can help detect it as soon as possible. In particular, heart rate related signals collected via devices such as smartwatches. These studies have resulted in some detection tools, but they always require users to have data from before the infection occurred in order to be used and often contain personalization based on this healthy data. But what if a new user has not yet collected healthy data? Can a model trained with the data of other individuals successfully detect the illness on a novel one? This work explores that situation by taking an individual based anomaly detection and transporting into a Federated Learning environment in order to see its behavior on the data from individuals that trained the model and novel individuals, including data collected via hospital devices from individuals admitted to the intensive care unit which is unlikely to contain healthy data. Although the resulting models, on average, did not detect more true anomalies than the personalized ones, their performance is similar when applied to the training individuals and novel ones.A pandemia de COVID-19 de 2020 espalhou-se rapidamente, sobrecarregando os sistemas de saúde e causando milhões de mortes em todo o mundo. Investigadores e cientistas concentraram esforços em encontrar soluções para ajudar a detetar e conter a propagação da doença, incluindo ferramentas alimentadas por modelos de aprendizagem automática. Entre os estudos efetuados, vários exploram diferenças entre sinais biométricos de pessoas que contraíram COVID-19, recolhidos antes e depois da infeção, em busca de padrões que possam ajudar a detetar a doença o mais rápido possível. Em particular, em sinais relacionados com a frequência cardíaca recolhidos através de dispositivos como smartwatches. Esses estudos resultaram em algumas ferramentas de deteção, mas precisam que os utilizadores tenham dados anteriores a contraírem a doença para serem usados, contendo elementos de personalização com base nos dados saudáveis para funcionarem. Mas e se um novo utilizador não possuir dados saudáveis? Poderá um modelo treinado com dados de uns indivíduos detetar a doença noutros, com sucesso? Este trabalho explora essa situação transportando uma ferramenta de deteção de anomalia personalizada para um ambiente de Aprendizagem Federada, a fim de ver seu comportamento em dados de indivíduos que participaram no treino do modelo e de novos indivíduos, incluindo dados recolhidos por dispositivos hospitalares de indivíduos internados numa unidade de cuidados intensivos, que dificilmente contém dados saudáveis. Embora os modelos resultantes em média, não detetem mais anomalias verdadeiras do que os modelos personalizados, seu desempenho ´e semelhante quando aplicado a dados de indivíduos de treino e novos indivíduos.2024-01-03T13:14:40Z2023-11-21T00:00:00Z2023-11-212023-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/30191TID:203439589engPolido, Susana Isabel de Carvalhoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-07T01:16:38Zoai:repositorio.iscte-iul.pt:10071/30191Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:30:36.137327Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Applying federated learning to a Covid-19 anomaly detection pipeline
title Applying federated learning to a Covid-19 anomaly detection pipeline
spellingShingle Applying federated learning to a Covid-19 anomaly detection pipeline
Polido, Susana Isabel de Carvalho
Anomaly detection
Federated learning
Health model
Machine learning
Deteção de anomalias
Aprendizagem federada
Modelo na saúde
Aprendizagem automática
title_short Applying federated learning to a Covid-19 anomaly detection pipeline
title_full Applying federated learning to a Covid-19 anomaly detection pipeline
title_fullStr Applying federated learning to a Covid-19 anomaly detection pipeline
title_full_unstemmed Applying federated learning to a Covid-19 anomaly detection pipeline
title_sort Applying federated learning to a Covid-19 anomaly detection pipeline
author Polido, Susana Isabel de Carvalho
author_facet Polido, Susana Isabel de Carvalho
author_role author
dc.contributor.author.fl_str_mv Polido, Susana Isabel de Carvalho
dc.subject.por.fl_str_mv Anomaly detection
Federated learning
Health model
Machine learning
Deteção de anomalias
Aprendizagem federada
Modelo na saúde
Aprendizagem automática
topic Anomaly detection
Federated learning
Health model
Machine learning
Deteção de anomalias
Aprendizagem federada
Modelo na saúde
Aprendizagem automática
description The COVID-19 pandemic of 2020 spread around the world fast, overwhelming healthcare systems and causing millions of deaths all over the globe. Researchers and scientists rushed to find tools to help detect and contain the spread of the disease, including automatic ones powered by machine learning models. Amongst the efforts, several studies focused on exploring differences between biometric signals in people with the disease collected before and after the infection, in search of patterns that can help detect it as soon as possible. In particular, heart rate related signals collected via devices such as smartwatches. These studies have resulted in some detection tools, but they always require users to have data from before the infection occurred in order to be used and often contain personalization based on this healthy data. But what if a new user has not yet collected healthy data? Can a model trained with the data of other individuals successfully detect the illness on a novel one? This work explores that situation by taking an individual based anomaly detection and transporting into a Federated Learning environment in order to see its behavior on the data from individuals that trained the model and novel individuals, including data collected via hospital devices from individuals admitted to the intensive care unit which is unlikely to contain healthy data. Although the resulting models, on average, did not detect more true anomalies than the personalized ones, their performance is similar when applied to the training individuals and novel ones.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-21T00:00:00Z
2023-11-21
2023-10
2024-01-03T13:14:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/30191
TID:203439589
url http://hdl.handle.net/10071/30191
identifier_str_mv TID:203439589
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136787977732096