Simulation, modelling and classification of wiki contributors: Spotting the good, the bad, and the ugly
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/11328/4289 https://doi.org/10.1016/j.simpat.2022.102616 |
Resumo: | Data crowdsourcing is a data acquisition process where groups of voluntary contributors feed platforms with highly relevant data ranging from news, comments, and media to knowledge and classifications. It typically processes user-generated data streams to provide and refine popular services such as wikis, collaborative maps, e-commerce sites, and social networks. Nevertheless, this modus operandi raises severe concerns regarding ill-intentioned data manipulation in adversarial environments. This paper presents a simulation, modelling, and classification approach to automatically identify human and non-human (bots) as well as benign and malign contributors by using data fabrication to balance classes within experimental data sets, data stream modelling to build and update contributor profiles and, finally, autonomic data stream classification. By employing WikiVoyage – a free worldwide wiki travel guide open to contribution from the general public – as a testbed, our approach proves to significantly boost the confidence and quality of the classifier by using a class-balanced data stream, comprising both real and synthetic data. Our empirical results show that the proposed method distinguishes between benign and malign bots as well as human contributors with a classification accuracy of up to 92 %. |
id |
RCAP_ee3ad3ac6f7b40b793583d13929bf112 |
---|---|
oai_identifier_str |
oai:repositorio.upt.pt:11328/4289 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Simulation, modelling and classification of wiki contributors: Spotting the good, the bad, and the uglyClassificationData reliabilityStream processingSynthetic dataData fabricationWiki contributorsData crowdsourcing is a data acquisition process where groups of voluntary contributors feed platforms with highly relevant data ranging from news, comments, and media to knowledge and classifications. It typically processes user-generated data streams to provide and refine popular services such as wikis, collaborative maps, e-commerce sites, and social networks. Nevertheless, this modus operandi raises severe concerns regarding ill-intentioned data manipulation in adversarial environments. This paper presents a simulation, modelling, and classification approach to automatically identify human and non-human (bots) as well as benign and malign contributors by using data fabrication to balance classes within experimental data sets, data stream modelling to build and update contributor profiles and, finally, autonomic data stream classification. By employing WikiVoyage – a free worldwide wiki travel guide open to contribution from the general public – as a testbed, our approach proves to significantly boost the confidence and quality of the classifier by using a class-balanced data stream, comprising both real and synthetic data. Our empirical results show that the proposed method distinguishes between benign and malign bots as well as human contributors with a classification accuracy of up to 92 %.Elsevier2022-06-27T10:56:39Z2022-06-272022-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfimage/pngGarcía-Méndez, S., Leal, F., Malheiro, B., Burguillo-Rial, J. C., Veloso, B., Chis, A. E., & González-Vélez, H. (2022). Simulation, modelling and classification of wiki contributors: Spotting the good, the bad, and the ugly. Simulation Modelling Practice and Theory, 120, 102616, 1-13. https://doi.org/10.1016/j.simpat.2022.102616. Repositório Institucional UPT. http://hdl.handle.net/11328/4289http://hdl.handle.net/11328/4289García-Méndez, S., Leal, F., Malheiro, B., Burguillo-Rial, J. C., Veloso, B., Chis, A. E., & González-Vélez, H. (2022). Simulation, modelling and classification of wiki contributors: Spotting the good, the bad, and the ugly. Simulation Modelling Practice and Theory, 120, 102616, 1-13. https://doi.org/10.1016/j.simpat.2022.102616. Repositório Institucional UPT. http://hdl.handle.net/11328/4289http://hdl.handle.net/11328/4289https://doi.org/10.1016/j.simpat.2022.102616eng1569-190X (Print)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessGarcía-Méndez, SilviaLeal, FátimaMalheiro, BeneditaBurguillo-Rial, Juan CarlosVeloso, BrunoChis, Adriana E.González-Vélez, Horacioreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T02:12:23Zoai:repositorio.upt.pt:11328/4289Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:41:20.410553Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Simulation, modelling and classification of wiki contributors: Spotting the good, the bad, and the ugly |
title |
Simulation, modelling and classification of wiki contributors: Spotting the good, the bad, and the ugly |
spellingShingle |
Simulation, modelling and classification of wiki contributors: Spotting the good, the bad, and the ugly García-Méndez, Silvia Classification Data reliability Stream processing Synthetic data Data fabrication Wiki contributors |
title_short |
Simulation, modelling and classification of wiki contributors: Spotting the good, the bad, and the ugly |
title_full |
Simulation, modelling and classification of wiki contributors: Spotting the good, the bad, and the ugly |
title_fullStr |
Simulation, modelling and classification of wiki contributors: Spotting the good, the bad, and the ugly |
title_full_unstemmed |
Simulation, modelling and classification of wiki contributors: Spotting the good, the bad, and the ugly |
title_sort |
Simulation, modelling and classification of wiki contributors: Spotting the good, the bad, and the ugly |
author |
García-Méndez, Silvia |
author_facet |
García-Méndez, Silvia Leal, Fátima Malheiro, Benedita Burguillo-Rial, Juan Carlos Veloso, Bruno Chis, Adriana E. González-Vélez, Horacio |
author_role |
author |
author2 |
Leal, Fátima Malheiro, Benedita Burguillo-Rial, Juan Carlos Veloso, Bruno Chis, Adriana E. González-Vélez, Horacio |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
García-Méndez, Silvia Leal, Fátima Malheiro, Benedita Burguillo-Rial, Juan Carlos Veloso, Bruno Chis, Adriana E. González-Vélez, Horacio |
dc.subject.por.fl_str_mv |
Classification Data reliability Stream processing Synthetic data Data fabrication Wiki contributors |
topic |
Classification Data reliability Stream processing Synthetic data Data fabrication Wiki contributors |
description |
Data crowdsourcing is a data acquisition process where groups of voluntary contributors feed platforms with highly relevant data ranging from news, comments, and media to knowledge and classifications. It typically processes user-generated data streams to provide and refine popular services such as wikis, collaborative maps, e-commerce sites, and social networks. Nevertheless, this modus operandi raises severe concerns regarding ill-intentioned data manipulation in adversarial environments. This paper presents a simulation, modelling, and classification approach to automatically identify human and non-human (bots) as well as benign and malign contributors by using data fabrication to balance classes within experimental data sets, data stream modelling to build and update contributor profiles and, finally, autonomic data stream classification. By employing WikiVoyage – a free worldwide wiki travel guide open to contribution from the general public – as a testbed, our approach proves to significantly boost the confidence and quality of the classifier by using a class-balanced data stream, comprising both real and synthetic data. Our empirical results show that the proposed method distinguishes between benign and malign bots as well as human contributors with a classification accuracy of up to 92 %. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-27T10:56:39Z 2022-06-27 2022-06-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
García-Méndez, S., Leal, F., Malheiro, B., Burguillo-Rial, J. C., Veloso, B., Chis, A. E., & González-Vélez, H. (2022). Simulation, modelling and classification of wiki contributors: Spotting the good, the bad, and the ugly. Simulation Modelling Practice and Theory, 120, 102616, 1-13. https://doi.org/10.1016/j.simpat.2022.102616. Repositório Institucional UPT. http://hdl.handle.net/11328/4289 http://hdl.handle.net/11328/4289 García-Méndez, S., Leal, F., Malheiro, B., Burguillo-Rial, J. C., Veloso, B., Chis, A. E., & González-Vélez, H. (2022). Simulation, modelling and classification of wiki contributors: Spotting the good, the bad, and the ugly. Simulation Modelling Practice and Theory, 120, 102616, 1-13. https://doi.org/10.1016/j.simpat.2022.102616. Repositório Institucional UPT. http://hdl.handle.net/11328/4289 http://hdl.handle.net/11328/4289 https://doi.org/10.1016/j.simpat.2022.102616 |
identifier_str_mv |
García-Méndez, S., Leal, F., Malheiro, B., Burguillo-Rial, J. C., Veloso, B., Chis, A. E., & González-Vélez, H. (2022). Simulation, modelling and classification of wiki contributors: Spotting the good, the bad, and the ugly. Simulation Modelling Practice and Theory, 120, 102616, 1-13. https://doi.org/10.1016/j.simpat.2022.102616. Repositório Institucional UPT. http://hdl.handle.net/11328/4289 |
url |
http://hdl.handle.net/11328/4289 https://doi.org/10.1016/j.simpat.2022.102616 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1569-190X (Print) |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf image/png |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134976993656832 |