A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/21231 |
Resumo: | In this paper, we propose an optimal hierarchical bi-directional aggregation algorithm for the electric vehicles (EVs) integration in the smart grid (SG) using Vehicle to Grid (V2G) technology through a network of Charging Stations (CSs). The proposed model forecasts the power demand and performs Day-ahead (DA) load scheduling in the SG by optimizing EVs charging/discharging tasks. This method uses EVs and CSs as the voltage and frequency stabilizing tools in the SG. Before penetrating EVs in the V2G mode, this algorithm determines the on arrival EVs State of Charge (SOC) at CS, obtains projected park/departure time information from EV owners, evaluates their battery degradation cost prior to charging. After obtaining all necessary data, it either uses EV in the V2G mode to regulates the SG or charge it according to the owner request but, it ensure desired SOC on departure. The robustness of the proposed algorithm has been tested by using IEEE-32 Bus-Bars based power distribution in which EVs are integrated through five CSs. Two intense case studies have been carried out for the appropriate performance validation of the proposed algorithm. Simulations are performed using electricity pricing data from PJM and to test the EVs behaviour 3 types of EVs having different specifications are penetrated. Simulation results have proved that the proposed model is capable of integrating EVs in the voltage and frequency stabilization and it also simultaneously minimizes approximately $1500 in term of charging cost for EVs contributing in the V2G mode each day. Particularly, during peak hours this algorithm provides effective grid stabilization services. |
id |
RCAP_ee5b4fdca56b0d7b5b685f80e3c0d143 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/21231 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulationElectric VehiclesAggregation systemLoad stabilizationFrequency stabilizationEVs charging stationsSmart gridIn this paper, we propose an optimal hierarchical bi-directional aggregation algorithm for the electric vehicles (EVs) integration in the smart grid (SG) using Vehicle to Grid (V2G) technology through a network of Charging Stations (CSs). The proposed model forecasts the power demand and performs Day-ahead (DA) load scheduling in the SG by optimizing EVs charging/discharging tasks. This method uses EVs and CSs as the voltage and frequency stabilizing tools in the SG. Before penetrating EVs in the V2G mode, this algorithm determines the on arrival EVs State of Charge (SOC) at CS, obtains projected park/departure time information from EV owners, evaluates their battery degradation cost prior to charging. After obtaining all necessary data, it either uses EV in the V2G mode to regulates the SG or charge it according to the owner request but, it ensure desired SOC on departure. The robustness of the proposed algorithm has been tested by using IEEE-32 Bus-Bars based power distribution in which EVs are integrated through five CSs. Two intense case studies have been carried out for the appropriate performance validation of the proposed algorithm. Simulations are performed using electricity pricing data from PJM and to test the EVs behaviour 3 types of EVs having different specifications are penetrated. Simulation results have proved that the proposed model is capable of integrating EVs in the voltage and frequency stabilization and it also simultaneously minimizes approximately $1500 in term of charging cost for EVs contributing in the V2G mode each day. Particularly, during peak hours this algorithm provides effective grid stabilization services.ElsevierRepositório Científico do Instituto Politécnico do Portour Rehman, Ubaid2022-12-21T12:36:01Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/21231eng10.1016/j.ijepes.2022.108090info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:16:43Zoai:recipp.ipp.pt:10400.22/21231Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:40:59.886121Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation |
title |
A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation |
spellingShingle |
A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation ur Rehman, Ubaid Electric Vehicles Aggregation system Load stabilization Frequency stabilization EVs charging stations Smart grid |
title_short |
A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation |
title_full |
A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation |
title_fullStr |
A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation |
title_full_unstemmed |
A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation |
title_sort |
A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation |
author |
ur Rehman, Ubaid |
author_facet |
ur Rehman, Ubaid |
author_role |
author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
ur Rehman, Ubaid |
dc.subject.por.fl_str_mv |
Electric Vehicles Aggregation system Load stabilization Frequency stabilization EVs charging stations Smart grid |
topic |
Electric Vehicles Aggregation system Load stabilization Frequency stabilization EVs charging stations Smart grid |
description |
In this paper, we propose an optimal hierarchical bi-directional aggregation algorithm for the electric vehicles (EVs) integration in the smart grid (SG) using Vehicle to Grid (V2G) technology through a network of Charging Stations (CSs). The proposed model forecasts the power demand and performs Day-ahead (DA) load scheduling in the SG by optimizing EVs charging/discharging tasks. This method uses EVs and CSs as the voltage and frequency stabilizing tools in the SG. Before penetrating EVs in the V2G mode, this algorithm determines the on arrival EVs State of Charge (SOC) at CS, obtains projected park/departure time information from EV owners, evaluates their battery degradation cost prior to charging. After obtaining all necessary data, it either uses EV in the V2G mode to regulates the SG or charge it according to the owner request but, it ensure desired SOC on departure. The robustness of the proposed algorithm has been tested by using IEEE-32 Bus-Bars based power distribution in which EVs are integrated through five CSs. Two intense case studies have been carried out for the appropriate performance validation of the proposed algorithm. Simulations are performed using electricity pricing data from PJM and to test the EVs behaviour 3 types of EVs having different specifications are penetrated. Simulation results have proved that the proposed model is capable of integrating EVs in the voltage and frequency stabilization and it also simultaneously minimizes approximately $1500 in term of charging cost for EVs contributing in the V2G mode each day. Particularly, during peak hours this algorithm provides effective grid stabilization services. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-21T12:36:01Z 2022 2022-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/21231 |
url |
http://hdl.handle.net/10400.22/21231 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1016/j.ijepes.2022.108090 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131498280910848 |