A heuristic for the stability number of a graph based on convex quadratic programming and tabu search
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.2/1901 |
Resumo: | Recently, a characterization of the Lov´asz theta number based on convex quadratic programming was established. As a consequence of this formulation, we introduce a new upper bound on the stability number of a graph that slightly improves the theta number. Like this number, the new bound can be characterized as the minimum of a function whose values are the optimum values of convex quadratic programs. This paper is oriented mainly to the following question: how can the new bound be used to approximate the maximum stable set for large graphs? With this in mind we present a two-phase heuristic for the stability problem that begins by computing suboptimal solutions using the new bound definition. In the second phase a multi-start tabu search heuristic is implemented. The results of applying this heuristic to some DIMACS benchmark graphs are reported. |
id |
RCAP_eed127c3062d106a389911f6bc36f1ff |
---|---|
oai_identifier_str |
oai:repositorioaberto.uab.pt:10400.2/1901 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A heuristic for the stability number of a graph based on convex quadratic programming and tabu searchStability number ofa graphConvex quadratic programmingTabu searchRecently, a characterization of the Lov´asz theta number based on convex quadratic programming was established. As a consequence of this formulation, we introduce a new upper bound on the stability number of a graph that slightly improves the theta number. Like this number, the new bound can be characterized as the minimum of a function whose values are the optimum values of convex quadratic programs. This paper is oriented mainly to the following question: how can the new bound be used to approximate the maximum stable set for large graphs? With this in mind we present a two-phase heuristic for the stability problem that begins by computing suboptimal solutions using the new bound definition. In the second phase a multi-start tabu search heuristic is implemented. The results of applying this heuristic to some DIMACS benchmark graphs are reported.Springer New YorkRepositório AbertoCavique, LuísLuz, Carlos J.2011-10-19T16:53:10Z20092009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/1901engCavique, Luís; Luz, Carlos J. - A heuristic for the stability number of a graph based on convex quadratic programming and tabu search. "Journal of Mathematical Sciences" [Em linha]. ISSN 1072-3374 (Print) 1573-8795 (Online). Vol. 161, nº 6, (2009), p. 944-955ISSN: 1072-3374 (print version)info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T15:14:54Zoai:repositorioaberto.uab.pt:10400.2/1901Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:43:31.880623Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A heuristic for the stability number of a graph based on convex quadratic programming and tabu search |
title |
A heuristic for the stability number of a graph based on convex quadratic programming and tabu search |
spellingShingle |
A heuristic for the stability number of a graph based on convex quadratic programming and tabu search Cavique, Luís Stability number ofa graph Convex quadratic programming Tabu search |
title_short |
A heuristic for the stability number of a graph based on convex quadratic programming and tabu search |
title_full |
A heuristic for the stability number of a graph based on convex quadratic programming and tabu search |
title_fullStr |
A heuristic for the stability number of a graph based on convex quadratic programming and tabu search |
title_full_unstemmed |
A heuristic for the stability number of a graph based on convex quadratic programming and tabu search |
title_sort |
A heuristic for the stability number of a graph based on convex quadratic programming and tabu search |
author |
Cavique, Luís |
author_facet |
Cavique, Luís Luz, Carlos J. |
author_role |
author |
author2 |
Luz, Carlos J. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Repositório Aberto |
dc.contributor.author.fl_str_mv |
Cavique, Luís Luz, Carlos J. |
dc.subject.por.fl_str_mv |
Stability number ofa graph Convex quadratic programming Tabu search |
topic |
Stability number ofa graph Convex quadratic programming Tabu search |
description |
Recently, a characterization of the Lov´asz theta number based on convex quadratic programming was established. As a consequence of this formulation, we introduce a new upper bound on the stability number of a graph that slightly improves the theta number. Like this number, the new bound can be characterized as the minimum of a function whose values are the optimum values of convex quadratic programs. This paper is oriented mainly to the following question: how can the new bound be used to approximate the maximum stable set for large graphs? With this in mind we present a two-phase heuristic for the stability problem that begins by computing suboptimal solutions using the new bound definition. In the second phase a multi-start tabu search heuristic is implemented. The results of applying this heuristic to some DIMACS benchmark graphs are reported. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 2009-01-01T00:00:00Z 2011-10-19T16:53:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.2/1901 |
url |
http://hdl.handle.net/10400.2/1901 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Cavique, Luís; Luz, Carlos J. - A heuristic for the stability number of a graph based on convex quadratic programming and tabu search. "Journal of Mathematical Sciences" [Em linha]. ISSN 1072-3374 (Print) 1573-8795 (Online). Vol. 161, nº 6, (2009), p. 944-955 ISSN: 1072-3374 (print version) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer New York |
publisher.none.fl_str_mv |
Springer New York |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817552797794566144 |