Passivation of the TiO2 Surface and Promotion of N719 Dye Anchoring with Poly(4-vinylpyridine) for Efficient and Stable Dye-Sensitized Solar Cells
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/140893 |
Resumo: | Dye-sensitized solar cells (DSSCs) have turned to be the most promising PV technology for indoor applications, for sustainable powering billions of IoT devices and wireless indoor sensors; DSSCs are aesthetic, cheap, and safe, and they display extremely high power conversion efficiencies (PCEs). In this study, poly(4-vinylpyridine) (P4VP) of molecular weights (MW) ranging from 2.8 to 18.5k was prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization and studied as a new co-adsorbent with N719 dye to produce efficient DSSCs. P4VP adsorbs on TiO2 via coordinative bonding to the Lewis acid centers of the titania. The adsorbed P4VP effectively hampers the back-electron recombination at the photoanode/electrolyte interface and promotes stronger covalent dye bonding. The simultaneous adsorption of P4VP with N719 allowed reaching a PCE of ca. 7.5% under 1 Sun and with almost half dye loading of the reference device. Sequential adsorption of the P4VP led to a noticeable increase of the strongly covalent bonded dye fraction making the electron injection to the titania more efficient and improving the photocurrent density. The effect of polymer MW, concentration, and adsorption sequence with the N719 on the photovoltaic performance of the DSSCs is discussed. For the first time ever, the efficient long-chain polymeric P4VP co-adsorbent rendered a device with as high PCE as 9% under 1 Sun illumination and 22.5% under indoor 1000 lx light. The PCE history under natural aging suggests that P4VP is a high-performing co-adsorbent, which allows fabrication of quite stable devices. |
id |
RCAP_ef7a99b153b56fc1476a58d0666e4ae7 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/140893 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Passivation of the TiO2 Surface and Promotion of N719 Dye Anchoring with Poly(4-vinylpyridine) for Efficient and Stable Dye-Sensitized Solar CellsQuímica, Engenharia químicaChemistry, Chemical engineeringDye-sensitized solar cells (DSSCs) have turned to be the most promising PV technology for indoor applications, for sustainable powering billions of IoT devices and wireless indoor sensors; DSSCs are aesthetic, cheap, and safe, and they display extremely high power conversion efficiencies (PCEs). In this study, poly(4-vinylpyridine) (P4VP) of molecular weights (MW) ranging from 2.8 to 18.5k was prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization and studied as a new co-adsorbent with N719 dye to produce efficient DSSCs. P4VP adsorbs on TiO2 via coordinative bonding to the Lewis acid centers of the titania. The adsorbed P4VP effectively hampers the back-electron recombination at the photoanode/electrolyte interface and promotes stronger covalent dye bonding. The simultaneous adsorption of P4VP with N719 allowed reaching a PCE of ca. 7.5% under 1 Sun and with almost half dye loading of the reference device. Sequential adsorption of the P4VP led to a noticeable increase of the strongly covalent bonded dye fraction making the electron injection to the titania more efficient and improving the photocurrent density. The effect of polymer MW, concentration, and adsorption sequence with the N719 on the photovoltaic performance of the DSSCs is discussed. For the first time ever, the efficient long-chain polymeric P4VP co-adsorbent rendered a device with as high PCE as 9% under 1 Sun illumination and 22.5% under indoor 1000 lx light. The PCE history under natural aging suggests that P4VP is a high-performing co-adsorbent, which allows fabrication of quite stable devices.2021-05-032021-05-03T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/140893eng2168-048510.1021/acssuschemeng.1c00842Daniela RodriguesFátima SantosCarlos AbreuJorge CoelhoArménio SerraDzmitry IvanouAdélio Mendesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-09-27T08:32:03Zoai:repositorio-aberto.up.pt:10216/140893Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-09-27T08:32:03Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Passivation of the TiO2 Surface and Promotion of N719 Dye Anchoring with Poly(4-vinylpyridine) for Efficient and Stable Dye-Sensitized Solar Cells |
title |
Passivation of the TiO2 Surface and Promotion of N719 Dye Anchoring with Poly(4-vinylpyridine) for Efficient and Stable Dye-Sensitized Solar Cells |
spellingShingle |
Passivation of the TiO2 Surface and Promotion of N719 Dye Anchoring with Poly(4-vinylpyridine) for Efficient and Stable Dye-Sensitized Solar Cells Daniela Rodrigues Química, Engenharia química Chemistry, Chemical engineering |
title_short |
Passivation of the TiO2 Surface and Promotion of N719 Dye Anchoring with Poly(4-vinylpyridine) for Efficient and Stable Dye-Sensitized Solar Cells |
title_full |
Passivation of the TiO2 Surface and Promotion of N719 Dye Anchoring with Poly(4-vinylpyridine) for Efficient and Stable Dye-Sensitized Solar Cells |
title_fullStr |
Passivation of the TiO2 Surface and Promotion of N719 Dye Anchoring with Poly(4-vinylpyridine) for Efficient and Stable Dye-Sensitized Solar Cells |
title_full_unstemmed |
Passivation of the TiO2 Surface and Promotion of N719 Dye Anchoring with Poly(4-vinylpyridine) for Efficient and Stable Dye-Sensitized Solar Cells |
title_sort |
Passivation of the TiO2 Surface and Promotion of N719 Dye Anchoring with Poly(4-vinylpyridine) for Efficient and Stable Dye-Sensitized Solar Cells |
author |
Daniela Rodrigues |
author_facet |
Daniela Rodrigues Fátima Santos Carlos Abreu Jorge Coelho Arménio Serra Dzmitry Ivanou Adélio Mendes |
author_role |
author |
author2 |
Fátima Santos Carlos Abreu Jorge Coelho Arménio Serra Dzmitry Ivanou Adélio Mendes |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Daniela Rodrigues Fátima Santos Carlos Abreu Jorge Coelho Arménio Serra Dzmitry Ivanou Adélio Mendes |
dc.subject.por.fl_str_mv |
Química, Engenharia química Chemistry, Chemical engineering |
topic |
Química, Engenharia química Chemistry, Chemical engineering |
description |
Dye-sensitized solar cells (DSSCs) have turned to be the most promising PV technology for indoor applications, for sustainable powering billions of IoT devices and wireless indoor sensors; DSSCs are aesthetic, cheap, and safe, and they display extremely high power conversion efficiencies (PCEs). In this study, poly(4-vinylpyridine) (P4VP) of molecular weights (MW) ranging from 2.8 to 18.5k was prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization and studied as a new co-adsorbent with N719 dye to produce efficient DSSCs. P4VP adsorbs on TiO2 via coordinative bonding to the Lewis acid centers of the titania. The adsorbed P4VP effectively hampers the back-electron recombination at the photoanode/electrolyte interface and promotes stronger covalent dye bonding. The simultaneous adsorption of P4VP with N719 allowed reaching a PCE of ca. 7.5% under 1 Sun and with almost half dye loading of the reference device. Sequential adsorption of the P4VP led to a noticeable increase of the strongly covalent bonded dye fraction making the electron injection to the titania more efficient and improving the photocurrent density. The effect of polymer MW, concentration, and adsorption sequence with the N719 on the photovoltaic performance of the DSSCs is discussed. For the first time ever, the efficient long-chain polymeric P4VP co-adsorbent rendered a device with as high PCE as 9% under 1 Sun illumination and 22.5% under indoor 1000 lx light. The PCE history under natural aging suggests that P4VP is a high-performing co-adsorbent, which allows fabrication of quite stable devices. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-03 2021-05-03T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/140893 |
url |
https://hdl.handle.net/10216/140893 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2168-0485 10.1021/acssuschemeng.1c00842 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817547934834622465 |