Monitoring and prediction of particulate matter (PM2.5 and PM10) around the IPBeja Campus

Detalhes bibliográficos
Autor(a) principal: Silva, Flávia Matias Oliveira da
Data de Publicação: 2021
Outros Autores: Alexandrina, Eduardo Carlos, Pardal, Ana Cristina, Carvalhos, Maria Teresa, Lui, Elaine Schornobay
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/20.500.12207/5707
Resumo: Nowadays, most of the world’s population lives in urban centers, where air quality stand- 12 ards are not strictly observed; citizens are exposed to air quality levels over the limits of the World 13 Health Organization. The interaction between the issuing and atmospheric sources influences the 14 air quality or level. The local climatic conditions (temperature, humidity, winds, rainfall) determine 15 a greater or less dispersion of the pollutants present. In this sense, this work aimed to build a math 16 modelling prediction to monitor the air quality around the campus of IPBeja, which is in the vicinity 17 of a car traffic zone. The study analyzed the data from the last months, particulate matter (PM10 18 and PM2.5), and meteorological parameters for prediction using NARX. The device contains a par- 19 ticle sensor (NOVA SDS011), a microcontroller ESP8266 NodeMCU v3, a temperature sensor, hu- 20 midity, pressure BME280, and a suction tube. The results show a considerable increase in particles 21 in occasional periods, reaching average values of 135 μg/m3 for PM10 and 52 μg/m3 for PM2.5. 22 Thus, the monitoring and prediction serve as a warning to perceive these changes and be able to 23 relate them to natural phenomena or issuing sources in specific cases.
id RCAP_efaf75c376ce92335d79fafcc417239b
oai_identifier_str oai:repositorio.ipbeja.pt:20.500.12207/5707
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Monitoring and prediction of particulate matter (PM2.5 and PM10) around the IPBeja CampusParticulate matterAir qualityNeural networksNARXNowadays, most of the world’s population lives in urban centers, where air quality stand- 12 ards are not strictly observed; citizens are exposed to air quality levels over the limits of the World 13 Health Organization. The interaction between the issuing and atmospheric sources influences the 14 air quality or level. The local climatic conditions (temperature, humidity, winds, rainfall) determine 15 a greater or less dispersion of the pollutants present. In this sense, this work aimed to build a math 16 modelling prediction to monitor the air quality around the campus of IPBeja, which is in the vicinity 17 of a car traffic zone. The study analyzed the data from the last months, particulate matter (PM10 18 and PM2.5), and meteorological parameters for prediction using NARX. The device contains a par- 19 ticle sensor (NOVA SDS011), a microcontroller ESP8266 NodeMCU v3, a temperature sensor, hu- 20 midity, pressure BME280, and a suction tube. The results show a considerable increase in particles 21 in occasional periods, reaching average values of 135 μg/m3 for PM10 and 52 μg/m3 for PM2.5. 22 Thus, the monitoring and prediction serve as a warning to perceive these changes and be able to 23 relate them to natural phenomena or issuing sources in specific cases.MDPI2023-01-09T16:14:51Z2021-12-16T00:00:00Z2021-12-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/20.500.12207/5707eng2071-1050Silva, Flávia Matias Oliveira daAlexandrina, Eduardo CarlosPardal, Ana CristinaCarvalhos, Maria TeresaLui, Elaine Schornobayinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-01-12T07:45:19Zoai:repositorio.ipbeja.pt:20.500.12207/5707Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:30:13.153391Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Monitoring and prediction of particulate matter (PM2.5 and PM10) around the IPBeja Campus
title Monitoring and prediction of particulate matter (PM2.5 and PM10) around the IPBeja Campus
spellingShingle Monitoring and prediction of particulate matter (PM2.5 and PM10) around the IPBeja Campus
Silva, Flávia Matias Oliveira da
Particulate matter
Air quality
Neural networks
NARX
title_short Monitoring and prediction of particulate matter (PM2.5 and PM10) around the IPBeja Campus
title_full Monitoring and prediction of particulate matter (PM2.5 and PM10) around the IPBeja Campus
title_fullStr Monitoring and prediction of particulate matter (PM2.5 and PM10) around the IPBeja Campus
title_full_unstemmed Monitoring and prediction of particulate matter (PM2.5 and PM10) around the IPBeja Campus
title_sort Monitoring and prediction of particulate matter (PM2.5 and PM10) around the IPBeja Campus
author Silva, Flávia Matias Oliveira da
author_facet Silva, Flávia Matias Oliveira da
Alexandrina, Eduardo Carlos
Pardal, Ana Cristina
Carvalhos, Maria Teresa
Lui, Elaine Schornobay
author_role author
author2 Alexandrina, Eduardo Carlos
Pardal, Ana Cristina
Carvalhos, Maria Teresa
Lui, Elaine Schornobay
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Silva, Flávia Matias Oliveira da
Alexandrina, Eduardo Carlos
Pardal, Ana Cristina
Carvalhos, Maria Teresa
Lui, Elaine Schornobay
dc.subject.por.fl_str_mv Particulate matter
Air quality
Neural networks
NARX
topic Particulate matter
Air quality
Neural networks
NARX
description Nowadays, most of the world’s population lives in urban centers, where air quality stand- 12 ards are not strictly observed; citizens are exposed to air quality levels over the limits of the World 13 Health Organization. The interaction between the issuing and atmospheric sources influences the 14 air quality or level. The local climatic conditions (temperature, humidity, winds, rainfall) determine 15 a greater or less dispersion of the pollutants present. In this sense, this work aimed to build a math 16 modelling prediction to monitor the air quality around the campus of IPBeja, which is in the vicinity 17 of a car traffic zone. The study analyzed the data from the last months, particulate matter (PM10 18 and PM2.5), and meteorological parameters for prediction using NARX. The device contains a par- 19 ticle sensor (NOVA SDS011), a microcontroller ESP8266 NodeMCU v3, a temperature sensor, hu- 20 midity, pressure BME280, and a suction tube. The results show a considerable increase in particles 21 in occasional periods, reaching average values of 135 μg/m3 for PM10 and 52 μg/m3 for PM2.5. 22 Thus, the monitoring and prediction serve as a warning to perceive these changes and be able to 23 relate them to natural phenomena or issuing sources in specific cases.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-16T00:00:00Z
2021-12-16
2023-01-09T16:14:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/20.500.12207/5707
url https://hdl.handle.net/20.500.12207/5707
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2071-1050
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799130759246643200