Automated segmentation, tracking and evaluation of bacteria in microscopy images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/8435 |
Resumo: | Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica |
id |
RCAP_efd20ada511fd812789f4040dd33dd78 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/8435 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Automated segmentation, tracking and evaluation of bacteria in microscopy imagesSegmentationAlignmentGPLClassifierCARTDissertação para obtenção do Grau de Mestre em Engenharia BiomédicaMost of the investigation in microbiology relies on microscope imaging and needs to be complemented with reliable methods of computer assisted image processing, in order to avoid manual analysis. In this work, a method to assist the study of the in vivo kinetics of protein expression from Escherichia coli cells was developed. Confocal fluorescence microscopy (CFM) and Differential Interference Contrast (DIC) microscopy images were acquired and processed using the developed method. This method comprises two steps: the first one is focused on the cells detection using DIC images. The latter aligns both DIC and CFM images and computes the fluorescence level emitted by each cell. For the first step, the Gradient Path Labelling (GPL) algorithm was used which produces a moderate over-segmented DIC image. The proposed algorithm, based on decision trees generated by the Classification and Regression Trees (CART) algorithm, discards the backgrounds regions and merges the regions belonging to the same cell. To align DIC/fluorescence images an exhaustive search of the relative position and scale parameters that maximizes the fluorescence inside the cells is made. After the cells have been located on the CFM images, the fluorescence emitted by each cell is evaluated. The discard classifier performed with an error rate of 1:81% 0:98% and the merge classifier with 3:25% 1:37%. The segmentation algorithm detected 93:71% 2:06% of the cells in the tested images. The tracking algorithm correctly followed 64:52% 16:02% of cells and the alignment method successfully aligned all the tested images.Faculdade de Ciências e TecnologiaFonseca, JoséMora, AndréRibeiro, AndréRUNQueimadelas, Cátia Cristina Arranca2013-01-04T15:55:11Z20122012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/8435enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T03:41:03Zoai:run.unl.pt:10362/8435Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:18:12.026574Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Automated segmentation, tracking and evaluation of bacteria in microscopy images |
title |
Automated segmentation, tracking and evaluation of bacteria in microscopy images |
spellingShingle |
Automated segmentation, tracking and evaluation of bacteria in microscopy images Queimadelas, Cátia Cristina Arranca Segmentation Alignment GPL Classifier CART |
title_short |
Automated segmentation, tracking and evaluation of bacteria in microscopy images |
title_full |
Automated segmentation, tracking and evaluation of bacteria in microscopy images |
title_fullStr |
Automated segmentation, tracking and evaluation of bacteria in microscopy images |
title_full_unstemmed |
Automated segmentation, tracking and evaluation of bacteria in microscopy images |
title_sort |
Automated segmentation, tracking and evaluation of bacteria in microscopy images |
author |
Queimadelas, Cátia Cristina Arranca |
author_facet |
Queimadelas, Cátia Cristina Arranca |
author_role |
author |
dc.contributor.none.fl_str_mv |
Fonseca, José Mora, André Ribeiro, André RUN |
dc.contributor.author.fl_str_mv |
Queimadelas, Cátia Cristina Arranca |
dc.subject.por.fl_str_mv |
Segmentation Alignment GPL Classifier CART |
topic |
Segmentation Alignment GPL Classifier CART |
description |
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 2012-01-01T00:00:00Z 2013-01-04T15:55:11Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/8435 |
url |
http://hdl.handle.net/10362/8435 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Faculdade de Ciências e Tecnologia |
publisher.none.fl_str_mv |
Faculdade de Ciências e Tecnologia |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137827887251456 |