On the classification of financial data with domain agnostic features
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/21676 |
Resumo: | We compare a data-driven domain agnostic set of canonical features with a smaller collection of features that capture well-known stylized facts about financial asset returns. We show that these facts discriminate better different asset types than general-purpose features. Therefore, financial time series analysis is a domain where well-informed expert knowledge may not be disregarded in favor of agnostic representations of the data. |
id |
RCAP_effddb9911ec8b2c641e8529ce247f95 |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/21676 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the classification of financial data with domain agnostic featuresFinancial economicsTime seriesClusteringClassificationMachine learningWe compare a data-driven domain agnostic set of canonical features with a smaller collection of features that capture well-known stylized facts about financial asset returns. We show that these facts discriminate better different asset types than general-purpose features. Therefore, financial time series analysis is a domain where well-informed expert knowledge may not be disregarded in favor of agnostic representations of the data.ISEG - REM - Research in Economics and MathematicsRepositório da Universidade de LisboaBastos, João A.Caiado, Jorge2021-07-27T14:29:54Z2021-072021-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/21676engBastos, João A. e Jorge Caiado (2021). "On the classification of financial data with domain agnostic features". Instituto Superior de Economia e Gestão – REM Working paper nº 0185 – 20212184-108Xinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-06T14:51:13Zoai:www.repository.utl.pt:10400.5/21676Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:06:13.278386Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the classification of financial data with domain agnostic features |
title |
On the classification of financial data with domain agnostic features |
spellingShingle |
On the classification of financial data with domain agnostic features Bastos, João A. Financial economics Time series Clustering Classification Machine learning |
title_short |
On the classification of financial data with domain agnostic features |
title_full |
On the classification of financial data with domain agnostic features |
title_fullStr |
On the classification of financial data with domain agnostic features |
title_full_unstemmed |
On the classification of financial data with domain agnostic features |
title_sort |
On the classification of financial data with domain agnostic features |
author |
Bastos, João A. |
author_facet |
Bastos, João A. Caiado, Jorge |
author_role |
author |
author2 |
Caiado, Jorge |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Bastos, João A. Caiado, Jorge |
dc.subject.por.fl_str_mv |
Financial economics Time series Clustering Classification Machine learning |
topic |
Financial economics Time series Clustering Classification Machine learning |
description |
We compare a data-driven domain agnostic set of canonical features with a smaller collection of features that capture well-known stylized facts about financial asset returns. We show that these facts discriminate better different asset types than general-purpose features. Therefore, financial time series analysis is a domain where well-informed expert knowledge may not be disregarded in favor of agnostic representations of the data. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-27T14:29:54Z 2021-07 2021-07-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/21676 |
url |
http://hdl.handle.net/10400.5/21676 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Bastos, João A. e Jorge Caiado (2021). "On the classification of financial data with domain agnostic features". Instituto Superior de Economia e Gestão – REM Working paper nº 0185 – 2021 2184-108X |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
ISEG - REM - Research in Economics and Mathematics |
publisher.none.fl_str_mv |
ISEG - REM - Research in Economics and Mathematics |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131155050528768 |