Multiscale modelling of the thermoelastic properties of alumina-zirconia ceramics for 3D printing

Detalhes bibliográficos
Autor(a) principal: Carmo, Gustavo P.
Data de Publicação: 2023
Outros Autores: Mesquita-Guimarães, Joana, Baltazar, Joana, Olhero, Susana M., Antunes, Pedro, Torres, Paula M.C., Gouveia, Sónia, Dias-de-Oliveira, João, Pinho-da-Cruz, Joaquim
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/37908
Resumo: Additive manufacturing appears to facilitate the accurate manufacturing of alumina-zirconia technical ceramics. Nevertheless, the fine tuning of the manufacturing of these components by 3D printing requires an analysis of the parameters that influence their final thermoelastic properties. In this context, this work presents the application of (finite element-based) numerical procedures that aim at the prediction of the effective thermoelastic properties of 3D-printed alumina-zirconia ceramics. The numerical modelling considers three different scales: micro-, meso- and macroscale. The microscale corresponds to the microstructural level of, sintered at 1500 ºC, slip-casted samples with different compositions of alumina-zirconia. On the other hand, the macroscale corresponds to the macrostructural level of porous lattice of 3D-printed ceramics, being defined at the mesoscale level by a periodic unit cell. Thus, an initial microstructural analysis (at microscale level) provides the influence of the alumina/zirconia ratio on the (macroscopically homogeneous and isotropic) material thermoelastic properties, which together with the definition of the geometry of a periodic unit cell (at mesoscale level), provides, by a second analysis (at both the meso- and macroscale levels), the coupled influence of material and geometry of the macrostructural lattice on the structural (macroscopically heterogeneous and anisotropic) thermoelastic properties. Moreover, experimental thermoelastic properties of the sintered slip-casted specimens were obtained for several alumina/zirconia ratios and analyzed together with microstructure patterns. Prediction of the microstructural effective thermoelastic properties was also made using micromechanics and composite theory (analytical) models. All the numerical, experimental and analytical results for the microstructural level are presented and compared. Numerical results for the meso- and macrostructural levels are also presented.
id RCAP_f01e32519c8b4d373af4a1a46ee21527
oai_identifier_str oai:ria.ua.pt:10773/37908
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Multiscale modelling of the thermoelastic properties of alumina-zirconia ceramics for 3D printingAluminaZirconiaThermoelastic propertiesMicrostructural modelingAsymptotic expansion homogenisationFinite element analysisAdditive manufacturing appears to facilitate the accurate manufacturing of alumina-zirconia technical ceramics. Nevertheless, the fine tuning of the manufacturing of these components by 3D printing requires an analysis of the parameters that influence their final thermoelastic properties. In this context, this work presents the application of (finite element-based) numerical procedures that aim at the prediction of the effective thermoelastic properties of 3D-printed alumina-zirconia ceramics. The numerical modelling considers three different scales: micro-, meso- and macroscale. The microscale corresponds to the microstructural level of, sintered at 1500 ºC, slip-casted samples with different compositions of alumina-zirconia. On the other hand, the macroscale corresponds to the macrostructural level of porous lattice of 3D-printed ceramics, being defined at the mesoscale level by a periodic unit cell. Thus, an initial microstructural analysis (at microscale level) provides the influence of the alumina/zirconia ratio on the (macroscopically homogeneous and isotropic) material thermoelastic properties, which together with the definition of the geometry of a periodic unit cell (at mesoscale level), provides, by a second analysis (at both the meso- and macroscale levels), the coupled influence of material and geometry of the macrostructural lattice on the structural (macroscopically heterogeneous and anisotropic) thermoelastic properties. Moreover, experimental thermoelastic properties of the sintered slip-casted specimens were obtained for several alumina/zirconia ratios and analyzed together with microstructure patterns. Prediction of the microstructural effective thermoelastic properties was also made using micromechanics and composite theory (analytical) models. All the numerical, experimental and analytical results for the microstructural level are presented and compared. Numerical results for the meso- and macrostructural levels are also presented.Elsevier2025-05-12T00:00:00Z2023-05-12T00:00:00Z2023-05-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/37908eng0272-884210.1016/j.ceramint.2023.05.052Carmo, Gustavo P.Mesquita-Guimarães, JoanaBaltazar, JoanaOlhero, Susana M.Antunes, PedroTorres, Paula M.C.Gouveia, SóniaDias-de-Oliveira, JoãoPinho-da-Cruz, Joaquiminfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:14:00Zoai:ria.ua.pt:10773/37908Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:08:27.455436Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Multiscale modelling of the thermoelastic properties of alumina-zirconia ceramics for 3D printing
title Multiscale modelling of the thermoelastic properties of alumina-zirconia ceramics for 3D printing
spellingShingle Multiscale modelling of the thermoelastic properties of alumina-zirconia ceramics for 3D printing
Carmo, Gustavo P.
Alumina
Zirconia
Thermoelastic properties
Microstructural modeling
Asymptotic expansion homogenisation
Finite element analysis
title_short Multiscale modelling of the thermoelastic properties of alumina-zirconia ceramics for 3D printing
title_full Multiscale modelling of the thermoelastic properties of alumina-zirconia ceramics for 3D printing
title_fullStr Multiscale modelling of the thermoelastic properties of alumina-zirconia ceramics for 3D printing
title_full_unstemmed Multiscale modelling of the thermoelastic properties of alumina-zirconia ceramics for 3D printing
title_sort Multiscale modelling of the thermoelastic properties of alumina-zirconia ceramics for 3D printing
author Carmo, Gustavo P.
author_facet Carmo, Gustavo P.
Mesquita-Guimarães, Joana
Baltazar, Joana
Olhero, Susana M.
Antunes, Pedro
Torres, Paula M.C.
Gouveia, Sónia
Dias-de-Oliveira, João
Pinho-da-Cruz, Joaquim
author_role author
author2 Mesquita-Guimarães, Joana
Baltazar, Joana
Olhero, Susana M.
Antunes, Pedro
Torres, Paula M.C.
Gouveia, Sónia
Dias-de-Oliveira, João
Pinho-da-Cruz, Joaquim
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Carmo, Gustavo P.
Mesquita-Guimarães, Joana
Baltazar, Joana
Olhero, Susana M.
Antunes, Pedro
Torres, Paula M.C.
Gouveia, Sónia
Dias-de-Oliveira, João
Pinho-da-Cruz, Joaquim
dc.subject.por.fl_str_mv Alumina
Zirconia
Thermoelastic properties
Microstructural modeling
Asymptotic expansion homogenisation
Finite element analysis
topic Alumina
Zirconia
Thermoelastic properties
Microstructural modeling
Asymptotic expansion homogenisation
Finite element analysis
description Additive manufacturing appears to facilitate the accurate manufacturing of alumina-zirconia technical ceramics. Nevertheless, the fine tuning of the manufacturing of these components by 3D printing requires an analysis of the parameters that influence their final thermoelastic properties. In this context, this work presents the application of (finite element-based) numerical procedures that aim at the prediction of the effective thermoelastic properties of 3D-printed alumina-zirconia ceramics. The numerical modelling considers three different scales: micro-, meso- and macroscale. The microscale corresponds to the microstructural level of, sintered at 1500 ºC, slip-casted samples with different compositions of alumina-zirconia. On the other hand, the macroscale corresponds to the macrostructural level of porous lattice of 3D-printed ceramics, being defined at the mesoscale level by a periodic unit cell. Thus, an initial microstructural analysis (at microscale level) provides the influence of the alumina/zirconia ratio on the (macroscopically homogeneous and isotropic) material thermoelastic properties, which together with the definition of the geometry of a periodic unit cell (at mesoscale level), provides, by a second analysis (at both the meso- and macroscale levels), the coupled influence of material and geometry of the macrostructural lattice on the structural (macroscopically heterogeneous and anisotropic) thermoelastic properties. Moreover, experimental thermoelastic properties of the sintered slip-casted specimens were obtained for several alumina/zirconia ratios and analyzed together with microstructure patterns. Prediction of the microstructural effective thermoelastic properties was also made using micromechanics and composite theory (analytical) models. All the numerical, experimental and analytical results for the microstructural level are presented and compared. Numerical results for the meso- and macrostructural levels are also presented.
publishDate 2023
dc.date.none.fl_str_mv 2023-05-12T00:00:00Z
2023-05-12
2025-05-12T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/37908
url http://hdl.handle.net/10773/37908
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0272-8842
10.1016/j.ceramint.2023.05.052
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137737106784256