Globally convergent DC trust-region methods

Detalhes bibliográficos
Autor(a) principal: Le Thi, Hoai An
Data de Publicação: 2014
Outros Autores: Huynh, Van Ngai, Dinh, Tao Pham, Vaz, A. Ismael F., Vicente, Luís Nunes
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/45702
https://doi.org/10.1007/s10898-014-0170-6
Resumo: In this paper, we investigate the use of DC (Difference of Convex functions) models and algorithms in the application of trust-region methods to the solution of a class of nonlinear optimization problems where the constrained set is closed and convex (and, from a practical point of view, where projecting onto the feasible region is computationally affordable). We consider DC local models for the quadratic model of the objective function used to compute the trust-region step, and apply a primal-dual subgradient method to the solution of the corresponding trust-region subproblems. One is able to prove that the resulting scheme is globally convergent to first-order stationary points. The theory requires the use of exact second-order derivatives but, in turn, the computation of the trust-region step asks only for one projection onto the feasible region (in comparison to the calculation of the generalized Cauchy point which may require more). The numerical efficiency and robustness of the proposed new scheme when applied to bound-constrained problems is measured by comparing its performance against some of the current state-of-the-art nonlinear programming solvers on a vast collection of test problems.
id RCAP_f02834a14b4fd7818b136ed527f02988
oai_identifier_str oai:estudogeral.uc.pt:10316/45702
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Globally convergent DC trust-region methodsIn this paper, we investigate the use of DC (Difference of Convex functions) models and algorithms in the application of trust-region methods to the solution of a class of nonlinear optimization problems where the constrained set is closed and convex (and, from a practical point of view, where projecting onto the feasible region is computationally affordable). We consider DC local models for the quadratic model of the objective function used to compute the trust-region step, and apply a primal-dual subgradient method to the solution of the corresponding trust-region subproblems. One is able to prove that the resulting scheme is globally convergent to first-order stationary points. The theory requires the use of exact second-order derivatives but, in turn, the computation of the trust-region step asks only for one projection onto the feasible region (in comparison to the calculation of the generalized Cauchy point which may require more). The numerical efficiency and robustness of the proposed new scheme when applied to bound-constrained problems is measured by comparing its performance against some of the current state-of-the-art nonlinear programming solvers on a vast collection of test problems.Springer US2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/45702http://hdl.handle.net/10316/45702https://doi.org/10.1007/s10898-014-0170-6enghttps://doi.org/10.1007/s10898-014-0170-6Le Thi, Hoai AnHuynh, Van NgaiDinh, Tao PhamVaz, A. Ismael F.Vicente, Luís Nunesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-25T12:11:50Zoai:estudogeral.uc.pt:10316/45702Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:25.639401Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Globally convergent DC trust-region methods
title Globally convergent DC trust-region methods
spellingShingle Globally convergent DC trust-region methods
Le Thi, Hoai An
title_short Globally convergent DC trust-region methods
title_full Globally convergent DC trust-region methods
title_fullStr Globally convergent DC trust-region methods
title_full_unstemmed Globally convergent DC trust-region methods
title_sort Globally convergent DC trust-region methods
author Le Thi, Hoai An
author_facet Le Thi, Hoai An
Huynh, Van Ngai
Dinh, Tao Pham
Vaz, A. Ismael F.
Vicente, Luís Nunes
author_role author
author2 Huynh, Van Ngai
Dinh, Tao Pham
Vaz, A. Ismael F.
Vicente, Luís Nunes
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Le Thi, Hoai An
Huynh, Van Ngai
Dinh, Tao Pham
Vaz, A. Ismael F.
Vicente, Luís Nunes
description In this paper, we investigate the use of DC (Difference of Convex functions) models and algorithms in the application of trust-region methods to the solution of a class of nonlinear optimization problems where the constrained set is closed and convex (and, from a practical point of view, where projecting onto the feasible region is computationally affordable). We consider DC local models for the quadratic model of the objective function used to compute the trust-region step, and apply a primal-dual subgradient method to the solution of the corresponding trust-region subproblems. One is able to prove that the resulting scheme is globally convergent to first-order stationary points. The theory requires the use of exact second-order derivatives but, in turn, the computation of the trust-region step asks only for one projection onto the feasible region (in comparison to the calculation of the generalized Cauchy point which may require more). The numerical efficiency and robustness of the proposed new scheme when applied to bound-constrained problems is measured by comparing its performance against some of the current state-of-the-art nonlinear programming solvers on a vast collection of test problems.
publishDate 2014
dc.date.none.fl_str_mv 2014
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/45702
http://hdl.handle.net/10316/45702
https://doi.org/10.1007/s10898-014-0170-6
url http://hdl.handle.net/10316/45702
https://doi.org/10.1007/s10898-014-0170-6
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://doi.org/10.1007/s10898-014-0170-6
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer US
publisher.none.fl_str_mv Springer US
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133821158817792