Globally convergent DC trust-region methods
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/45702 https://doi.org/10.1007/s10898-014-0170-6 |
Resumo: | In this paper, we investigate the use of DC (Difference of Convex functions) models and algorithms in the application of trust-region methods to the solution of a class of nonlinear optimization problems where the constrained set is closed and convex (and, from a practical point of view, where projecting onto the feasible region is computationally affordable). We consider DC local models for the quadratic model of the objective function used to compute the trust-region step, and apply a primal-dual subgradient method to the solution of the corresponding trust-region subproblems. One is able to prove that the resulting scheme is globally convergent to first-order stationary points. The theory requires the use of exact second-order derivatives but, in turn, the computation of the trust-region step asks only for one projection onto the feasible region (in comparison to the calculation of the generalized Cauchy point which may require more). The numerical efficiency and robustness of the proposed new scheme when applied to bound-constrained problems is measured by comparing its performance against some of the current state-of-the-art nonlinear programming solvers on a vast collection of test problems. |
id |
RCAP_f02834a14b4fd7818b136ed527f02988 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/45702 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Globally convergent DC trust-region methodsIn this paper, we investigate the use of DC (Difference of Convex functions) models and algorithms in the application of trust-region methods to the solution of a class of nonlinear optimization problems where the constrained set is closed and convex (and, from a practical point of view, where projecting onto the feasible region is computationally affordable). We consider DC local models for the quadratic model of the objective function used to compute the trust-region step, and apply a primal-dual subgradient method to the solution of the corresponding trust-region subproblems. One is able to prove that the resulting scheme is globally convergent to first-order stationary points. The theory requires the use of exact second-order derivatives but, in turn, the computation of the trust-region step asks only for one projection onto the feasible region (in comparison to the calculation of the generalized Cauchy point which may require more). The numerical efficiency and robustness of the proposed new scheme when applied to bound-constrained problems is measured by comparing its performance against some of the current state-of-the-art nonlinear programming solvers on a vast collection of test problems.Springer US2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/45702http://hdl.handle.net/10316/45702https://doi.org/10.1007/s10898-014-0170-6enghttps://doi.org/10.1007/s10898-014-0170-6Le Thi, Hoai AnHuynh, Van NgaiDinh, Tao PhamVaz, A. Ismael F.Vicente, Luís Nunesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-25T12:11:50Zoai:estudogeral.uc.pt:10316/45702Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:25.639401Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Globally convergent DC trust-region methods |
title |
Globally convergent DC trust-region methods |
spellingShingle |
Globally convergent DC trust-region methods Le Thi, Hoai An |
title_short |
Globally convergent DC trust-region methods |
title_full |
Globally convergent DC trust-region methods |
title_fullStr |
Globally convergent DC trust-region methods |
title_full_unstemmed |
Globally convergent DC trust-region methods |
title_sort |
Globally convergent DC trust-region methods |
author |
Le Thi, Hoai An |
author_facet |
Le Thi, Hoai An Huynh, Van Ngai Dinh, Tao Pham Vaz, A. Ismael F. Vicente, Luís Nunes |
author_role |
author |
author2 |
Huynh, Van Ngai Dinh, Tao Pham Vaz, A. Ismael F. Vicente, Luís Nunes |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Le Thi, Hoai An Huynh, Van Ngai Dinh, Tao Pham Vaz, A. Ismael F. Vicente, Luís Nunes |
description |
In this paper, we investigate the use of DC (Difference of Convex functions) models and algorithms in the application of trust-region methods to the solution of a class of nonlinear optimization problems where the constrained set is closed and convex (and, from a practical point of view, where projecting onto the feasible region is computationally affordable). We consider DC local models for the quadratic model of the objective function used to compute the trust-region step, and apply a primal-dual subgradient method to the solution of the corresponding trust-region subproblems. One is able to prove that the resulting scheme is globally convergent to first-order stationary points. The theory requires the use of exact second-order derivatives but, in turn, the computation of the trust-region step asks only for one projection onto the feasible region (in comparison to the calculation of the generalized Cauchy point which may require more). The numerical efficiency and robustness of the proposed new scheme when applied to bound-constrained problems is measured by comparing its performance against some of the current state-of-the-art nonlinear programming solvers on a vast collection of test problems. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/45702 http://hdl.handle.net/10316/45702 https://doi.org/10.1007/s10898-014-0170-6 |
url |
http://hdl.handle.net/10316/45702 https://doi.org/10.1007/s10898-014-0170-6 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://doi.org/10.1007/s10898-014-0170-6 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer US |
publisher.none.fl_str_mv |
Springer US |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133821158817792 |