On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials

Detalhes bibliográficos
Autor(a) principal: Ana Pilar Foulquie Moreno
Data de Publicação: 2010
Outros Autores: Vitor Luis Pereira de Sousa, Andrei Martínez Finkelshtein
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/6926
Resumo: In 1995, Magnus posed a conjecture about the asymptotics of the recurrence coefficients of orthogonal polynomials with respect to Jacobi weights with an algebraic singularity combined with a jump. We show rigorously that Magnus’ conjecture is correct even in a more general situation, when the weight above has an extra factor, which is analytic in a neighborhood of the interval of orthogonality and positive on that interval. The proof is based on the steepest descendent method of Deift and Zhou applied to the non-commutative Riemann–Hilbert problem characterizing the orthogonal polynomials. A feature of this situation is that the local analysis at has to be carried out in terms of confluent hypergeometric functions.
id RCAP_f0a03eeae7a7bf315e79061b30af0898
oai_identifier_str oai:ria.ua.pt:10773/6926
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomialsOrthogonal polynomialsAsymptoticsRiemann–Hilbert methodSteepest descentRecurrence coefficientsGeneralized Jacobi weightsIn 1995, Magnus posed a conjecture about the asymptotics of the recurrence coefficients of orthogonal polynomials with respect to Jacobi weights with an algebraic singularity combined with a jump. We show rigorously that Magnus’ conjecture is correct even in a more general situation, when the weight above has an extra factor, which is analytic in a neighborhood of the interval of orthogonality and positive on that interval. The proof is based on the steepest descendent method of Deift and Zhou applied to the non-commutative Riemann–Hilbert problem characterizing the orthogonal polynomials. A feature of this situation is that the local analysis at has to be carried out in terms of confluent hypergeometric functions.Elsevier2012-02-27T15:24:49Z2010-04-01T00:00:00Z2010-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/6926eng0021-904510.1016/j.jat.2009.08.006Ana Pilar Foulquie MorenoVitor Luis Pereira de SousaAndrei Martínez Finkelshteininfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:09:48Zoai:ria.ua.pt:10773/6926Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:44:04.400996Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials
title On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials
spellingShingle On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials
Ana Pilar Foulquie Moreno
Orthogonal polynomials
Asymptotics
Riemann–Hilbert method
Steepest descent
Recurrence coefficients
Generalized Jacobi weights
title_short On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials
title_full On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials
title_fullStr On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials
title_full_unstemmed On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials
title_sort On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials
author Ana Pilar Foulquie Moreno
author_facet Ana Pilar Foulquie Moreno
Vitor Luis Pereira de Sousa
Andrei Martínez Finkelshtein
author_role author
author2 Vitor Luis Pereira de Sousa
Andrei Martínez Finkelshtein
author2_role author
author
dc.contributor.author.fl_str_mv Ana Pilar Foulquie Moreno
Vitor Luis Pereira de Sousa
Andrei Martínez Finkelshtein
dc.subject.por.fl_str_mv Orthogonal polynomials
Asymptotics
Riemann–Hilbert method
Steepest descent
Recurrence coefficients
Generalized Jacobi weights
topic Orthogonal polynomials
Asymptotics
Riemann–Hilbert method
Steepest descent
Recurrence coefficients
Generalized Jacobi weights
description In 1995, Magnus posed a conjecture about the asymptotics of the recurrence coefficients of orthogonal polynomials with respect to Jacobi weights with an algebraic singularity combined with a jump. We show rigorously that Magnus’ conjecture is correct even in a more general situation, when the weight above has an extra factor, which is analytic in a neighborhood of the interval of orthogonality and positive on that interval. The proof is based on the steepest descendent method of Deift and Zhou applied to the non-commutative Riemann–Hilbert problem characterizing the orthogonal polynomials. A feature of this situation is that the local analysis at has to be carried out in terms of confluent hypergeometric functions.
publishDate 2010
dc.date.none.fl_str_mv 2010-04-01T00:00:00Z
2010-04
2012-02-27T15:24:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/6926
url http://hdl.handle.net/10773/6926
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0021-9045
10.1016/j.jat.2009.08.006
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137491381387264