On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/6926 |
Resumo: | In 1995, Magnus posed a conjecture about the asymptotics of the recurrence coefficients of orthogonal polynomials with respect to Jacobi weights with an algebraic singularity combined with a jump. We show rigorously that Magnus’ conjecture is correct even in a more general situation, when the weight above has an extra factor, which is analytic in a neighborhood of the interval of orthogonality and positive on that interval. The proof is based on the steepest descendent method of Deift and Zhou applied to the non-commutative Riemann–Hilbert problem characterizing the orthogonal polynomials. A feature of this situation is that the local analysis at has to be carried out in terms of confluent hypergeometric functions. |
id |
RCAP_f0a03eeae7a7bf315e79061b30af0898 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/6926 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomialsOrthogonal polynomialsAsymptoticsRiemann–Hilbert methodSteepest descentRecurrence coefficientsGeneralized Jacobi weightsIn 1995, Magnus posed a conjecture about the asymptotics of the recurrence coefficients of orthogonal polynomials with respect to Jacobi weights with an algebraic singularity combined with a jump. We show rigorously that Magnus’ conjecture is correct even in a more general situation, when the weight above has an extra factor, which is analytic in a neighborhood of the interval of orthogonality and positive on that interval. The proof is based on the steepest descendent method of Deift and Zhou applied to the non-commutative Riemann–Hilbert problem characterizing the orthogonal polynomials. A feature of this situation is that the local analysis at has to be carried out in terms of confluent hypergeometric functions.Elsevier2012-02-27T15:24:49Z2010-04-01T00:00:00Z2010-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/6926eng0021-904510.1016/j.jat.2009.08.006Ana Pilar Foulquie MorenoVitor Luis Pereira de SousaAndrei Martínez Finkelshteininfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:09:48Zoai:ria.ua.pt:10773/6926Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:44:04.400996Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials |
title |
On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials |
spellingShingle |
On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials Ana Pilar Foulquie Moreno Orthogonal polynomials Asymptotics Riemann–Hilbert method Steepest descent Recurrence coefficients Generalized Jacobi weights |
title_short |
On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials |
title_full |
On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials |
title_fullStr |
On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials |
title_full_unstemmed |
On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials |
title_sort |
On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials |
author |
Ana Pilar Foulquie Moreno |
author_facet |
Ana Pilar Foulquie Moreno Vitor Luis Pereira de Sousa Andrei Martínez Finkelshtein |
author_role |
author |
author2 |
Vitor Luis Pereira de Sousa Andrei Martínez Finkelshtein |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Ana Pilar Foulquie Moreno Vitor Luis Pereira de Sousa Andrei Martínez Finkelshtein |
dc.subject.por.fl_str_mv |
Orthogonal polynomials Asymptotics Riemann–Hilbert method Steepest descent Recurrence coefficients Generalized Jacobi weights |
topic |
Orthogonal polynomials Asymptotics Riemann–Hilbert method Steepest descent Recurrence coefficients Generalized Jacobi weights |
description |
In 1995, Magnus posed a conjecture about the asymptotics of the recurrence coefficients of orthogonal polynomials with respect to Jacobi weights with an algebraic singularity combined with a jump. We show rigorously that Magnus’ conjecture is correct even in a more general situation, when the weight above has an extra factor, which is analytic in a neighborhood of the interval of orthogonality and positive on that interval. The proof is based on the steepest descendent method of Deift and Zhou applied to the non-commutative Riemann–Hilbert problem characterizing the orthogonal polynomials. A feature of this situation is that the local analysis at has to be carried out in terms of confluent hypergeometric functions. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-04-01T00:00:00Z 2010-04 2012-02-27T15:24:49Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/6926 |
url |
http://hdl.handle.net/10773/6926 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0021-9045 10.1016/j.jat.2009.08.006 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137491381387264 |