Relative injectivity as cocompleteness for a class of distributors
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/42771 |
Resumo: | Notions and techniques of enriched category theory can be used to study topological structures, like metric spaces, topological spaces and approach spaces, in the context of topological theories. Recently in [D. Hofmann, Injective spaces via adjunction, arXiv:math.CT/0804.0326] the construction of a Yoneda embedding allowed to identify injectivity of spaces as cocompleteness and to show monadicity of the category of injective spaces and left adjoints over Set. In this paper we generalise these results, studying cocompleteness with respect to a given class of distributors. We show in particular that the description of several semantic domains presented in [M. Escardó and B. Flagg, Semantic domains, injective spaces and monads, Electronic Notes in Theoretical Computer Science 20 (1999)] can be translated into the V-enriched setting. |
id |
RCAP_f0c71fe458f3047ffd115cbeac7c67b0 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/42771 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Relative injectivity as cocompleteness for a class of distributorsQuantale, V-category, monad, topological theory, distributor, Yoneda lemma, weighted colimitNotions and techniques of enriched category theory can be used to study topological structures, like metric spaces, topological spaces and approach spaces, in the context of topological theories. Recently in [D. Hofmann, Injective spaces via adjunction, arXiv:math.CT/0804.0326] the construction of a Yoneda embedding allowed to identify injectivity of spaces as cocompleteness and to show monadicity of the category of injective spaces and left adjoints over Set. In this paper we generalise these results, studying cocompleteness with respect to a given class of distributors. We show in particular that the description of several semantic domains presented in [M. Escardó and B. Flagg, Semantic domains, injective spaces and monads, Electronic Notes in Theoretical Computer Science 20 (1999)] can be translated into the V-enriched setting.2008info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/42771http://hdl.handle.net/10316/42771engClementino, Maria ManuelHofmann, Dirkinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-25T06:24:27Zoai:estudogeral.uc.pt:10316/42771Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:25.798678Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Relative injectivity as cocompleteness for a class of distributors |
title |
Relative injectivity as cocompleteness for a class of distributors |
spellingShingle |
Relative injectivity as cocompleteness for a class of distributors Clementino, Maria Manuel Quantale, V-category, monad, topological theory, distributor, Yoneda lemma, weighted colimit |
title_short |
Relative injectivity as cocompleteness for a class of distributors |
title_full |
Relative injectivity as cocompleteness for a class of distributors |
title_fullStr |
Relative injectivity as cocompleteness for a class of distributors |
title_full_unstemmed |
Relative injectivity as cocompleteness for a class of distributors |
title_sort |
Relative injectivity as cocompleteness for a class of distributors |
author |
Clementino, Maria Manuel |
author_facet |
Clementino, Maria Manuel Hofmann, Dirk |
author_role |
author |
author2 |
Hofmann, Dirk |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Clementino, Maria Manuel Hofmann, Dirk |
dc.subject.por.fl_str_mv |
Quantale, V-category, monad, topological theory, distributor, Yoneda lemma, weighted colimit |
topic |
Quantale, V-category, monad, topological theory, distributor, Yoneda lemma, weighted colimit |
description |
Notions and techniques of enriched category theory can be used to study topological structures, like metric spaces, topological spaces and approach spaces, in the context of topological theories. Recently in [D. Hofmann, Injective spaces via adjunction, arXiv:math.CT/0804.0326] the construction of a Yoneda embedding allowed to identify injectivity of spaces as cocompleteness and to show monadicity of the category of injective spaces and left adjoints over Set. In this paper we generalise these results, studying cocompleteness with respect to a given class of distributors. We show in particular that the description of several semantic domains presented in [M. Escardó and B. Flagg, Semantic domains, injective spaces and monads, Electronic Notes in Theoretical Computer Science 20 (1999)] can be translated into the V-enriched setting. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/42771 http://hdl.handle.net/10316/42771 |
url |
http://hdl.handle.net/10316/42771 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133821163012096 |