Methodologies for pre-processing polymeric filament for Direct Digital Fabrication

Detalhes bibliográficos
Autor(a) principal: Silva, César Miguel Coitos da
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.8/8185
Resumo: The digital age presents alternatives to more traditional manufacturing concepts. One of the alternatives most adopted by the industry and society, in general, focuses on additive manufacturing, which has improved significantly over time, improving the user interface and optimizing parts construction times and quality. In this work is intended to study the impact of dehumidification pre-processing of the material at the Polylactic Acid (PLA) and Polyethylene Terephtalate Glycol (PETG), used in Fused Deposition Modeling (FDM). The results obtained in on the parts produced allowed to draw conclusions about impacts at an aesthetic level and at a mechanical level, and assess whether the pre-processing energy costs are justified, regarding the final quality of the produced part or improvements in their mechanical properties. Measurements of the weight were carried out on the printed pieces for the aesthetic experiments to compare the printed piece with dehumidified, non-dehumidified material, the Computer-Aided Design (CAD) part simulation and slicer software part simulation. The most significant results occurred in the aesthetic tests, as the differences are evident between the part printed with dehumidified material and the part printed with non-dehumidified material. The final weight of the pieces differs in all scenarios, where the lightest pieces are in the CAD software simulation, and heaviest parts are in the simulation of the slicer software. In the tensile tests, the non-dehumidified PLA material obtained better performance when compared to the PLA that was previously dehumidified for 6 hours. In the case of PETG, it was possible to identify the similar tensile strength between the previously dehumidified filament and the filament not previously dehumidified. To conclude the energy study revealed an overall consumption of approximately 0.32 kWh for the dehumidifier and printer set.
id RCAP_f0d6537b1ec9dbe5035dfc3c7534e0a3
oai_identifier_str oai:iconline.ipleiria.pt:10400.8/8185
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Methodologies for pre-processing polymeric filament for Direct Digital FabricationFDMPLAPETGMoisturePolymers3D PrintingDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasThe digital age presents alternatives to more traditional manufacturing concepts. One of the alternatives most adopted by the industry and society, in general, focuses on additive manufacturing, which has improved significantly over time, improving the user interface and optimizing parts construction times and quality. In this work is intended to study the impact of dehumidification pre-processing of the material at the Polylactic Acid (PLA) and Polyethylene Terephtalate Glycol (PETG), used in Fused Deposition Modeling (FDM). The results obtained in on the parts produced allowed to draw conclusions about impacts at an aesthetic level and at a mechanical level, and assess whether the pre-processing energy costs are justified, regarding the final quality of the produced part or improvements in their mechanical properties. Measurements of the weight were carried out on the printed pieces for the aesthetic experiments to compare the printed piece with dehumidified, non-dehumidified material, the Computer-Aided Design (CAD) part simulation and slicer software part simulation. The most significant results occurred in the aesthetic tests, as the differences are evident between the part printed with dehumidified material and the part printed with non-dehumidified material. The final weight of the pieces differs in all scenarios, where the lightest pieces are in the CAD software simulation, and heaviest parts are in the simulation of the slicer software. In the tensile tests, the non-dehumidified PLA material obtained better performance when compared to the PLA that was previously dehumidified for 6 hours. In the case of PETG, it was possible to identify the similar tensile strength between the previously dehumidified filament and the filament not previously dehumidified. To conclude the energy study revealed an overall consumption of approximately 0.32 kWh for the dehumidifier and printer set.Correia, Mário António SimõesCoelho, Paulo Jorge SimõesIC-OnlineSilva, César Miguel Coitos da2023-03-08T14:30:49Z2022-12-192022-12-19T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.8/8185TID:203244435enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-17T15:56:47Zoai:iconline.ipleiria.pt:10400.8/8185Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:50:57.990410Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Methodologies for pre-processing polymeric filament for Direct Digital Fabrication
title Methodologies for pre-processing polymeric filament for Direct Digital Fabrication
spellingShingle Methodologies for pre-processing polymeric filament for Direct Digital Fabrication
Silva, César Miguel Coitos da
FDM
PLA
PETG
Moisture
Polymers
3D Printing
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
title_short Methodologies for pre-processing polymeric filament for Direct Digital Fabrication
title_full Methodologies for pre-processing polymeric filament for Direct Digital Fabrication
title_fullStr Methodologies for pre-processing polymeric filament for Direct Digital Fabrication
title_full_unstemmed Methodologies for pre-processing polymeric filament for Direct Digital Fabrication
title_sort Methodologies for pre-processing polymeric filament for Direct Digital Fabrication
author Silva, César Miguel Coitos da
author_facet Silva, César Miguel Coitos da
author_role author
dc.contributor.none.fl_str_mv Correia, Mário António Simões
Coelho, Paulo Jorge Simões
IC-Online
dc.contributor.author.fl_str_mv Silva, César Miguel Coitos da
dc.subject.por.fl_str_mv FDM
PLA
PETG
Moisture
Polymers
3D Printing
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
topic FDM
PLA
PETG
Moisture
Polymers
3D Printing
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
description The digital age presents alternatives to more traditional manufacturing concepts. One of the alternatives most adopted by the industry and society, in general, focuses on additive manufacturing, which has improved significantly over time, improving the user interface and optimizing parts construction times and quality. In this work is intended to study the impact of dehumidification pre-processing of the material at the Polylactic Acid (PLA) and Polyethylene Terephtalate Glycol (PETG), used in Fused Deposition Modeling (FDM). The results obtained in on the parts produced allowed to draw conclusions about impacts at an aesthetic level and at a mechanical level, and assess whether the pre-processing energy costs are justified, regarding the final quality of the produced part or improvements in their mechanical properties. Measurements of the weight were carried out on the printed pieces for the aesthetic experiments to compare the printed piece with dehumidified, non-dehumidified material, the Computer-Aided Design (CAD) part simulation and slicer software part simulation. The most significant results occurred in the aesthetic tests, as the differences are evident between the part printed with dehumidified material and the part printed with non-dehumidified material. The final weight of the pieces differs in all scenarios, where the lightest pieces are in the CAD software simulation, and heaviest parts are in the simulation of the slicer software. In the tensile tests, the non-dehumidified PLA material obtained better performance when compared to the PLA that was previously dehumidified for 6 hours. In the case of PETG, it was possible to identify the similar tensile strength between the previously dehumidified filament and the filament not previously dehumidified. To conclude the energy study revealed an overall consumption of approximately 0.32 kWh for the dehumidifier and printer set.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-19
2022-12-19T00:00:00Z
2023-03-08T14:30:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.8/8185
TID:203244435
url http://hdl.handle.net/10400.8/8185
identifier_str_mv TID:203244435
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137001704783872