Howson's property for semidirect products of semilattices by groups

Detalhes bibliográficos
Autor(a) principal: Silva, Pedro V.
Data de Publicação: 2016
Outros Autores: Soares, Filipa
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.21/7268
Resumo: An inverse semigroup S is a Howson inverse semigroup if the intersection of finitely generated inverse subsemigroups of S is finitely generated. Given a locally finite action of a group G on a semilattice E, it is proved that E*G is a Howson inverse semigroup if and only if G is a Howson group. It is also shown that this equivalence fails for arbitrary actions.
id RCAP_f0e180e0a919c30a715bc99cd879ba0a
oai_identifier_str oai:repositorio.ipl.pt:10400.21/7268
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Howson's property for semidirect products of semilattices by groupsE-unitary inverse semigroupHowson’s theoremlocally finite actionsemidirect product of a semilattice by a group.An inverse semigroup S is a Howson inverse semigroup if the intersection of finitely generated inverse subsemigroups of S is finitely generated. Given a locally finite action of a group G on a semilattice E, it is proved that E*G is a Howson inverse semigroup if and only if G is a Howson group. It is also shown that this equivalence fails for arbitrary actions.Taylor & FrancisRCIPLSilva, Pedro V.Soares, Filipa2017-07-12T14:44:48Z20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/7268engSILVA, Pedro V.; SOARES, Filipa. - Howson's property for semidirect products of semilattices by groups. Communications in Algebra. ISSN 0092-7872. Vol. 44, N.º 6, (2016), pp. 2482–24940092-787210.1080/00927872.2015.1053903metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T09:53:06Zoai:repositorio.ipl.pt:10400.21/7268Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:16:15.093852Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Howson's property for semidirect products of semilattices by groups
title Howson's property for semidirect products of semilattices by groups
spellingShingle Howson's property for semidirect products of semilattices by groups
Silva, Pedro V.
E-unitary inverse semigroup
Howson’s theorem
locally finite action
semidirect product of a semilattice by a group.
title_short Howson's property for semidirect products of semilattices by groups
title_full Howson's property for semidirect products of semilattices by groups
title_fullStr Howson's property for semidirect products of semilattices by groups
title_full_unstemmed Howson's property for semidirect products of semilattices by groups
title_sort Howson's property for semidirect products of semilattices by groups
author Silva, Pedro V.
author_facet Silva, Pedro V.
Soares, Filipa
author_role author
author2 Soares, Filipa
author2_role author
dc.contributor.none.fl_str_mv RCIPL
dc.contributor.author.fl_str_mv Silva, Pedro V.
Soares, Filipa
dc.subject.por.fl_str_mv E-unitary inverse semigroup
Howson’s theorem
locally finite action
semidirect product of a semilattice by a group.
topic E-unitary inverse semigroup
Howson’s theorem
locally finite action
semidirect product of a semilattice by a group.
description An inverse semigroup S is a Howson inverse semigroup if the intersection of finitely generated inverse subsemigroups of S is finitely generated. Given a locally finite action of a group G on a semilattice E, it is proved that E*G is a Howson inverse semigroup if and only if G is a Howson group. It is also shown that this equivalence fails for arbitrary actions.
publishDate 2016
dc.date.none.fl_str_mv 2016
2016-01-01T00:00:00Z
2017-07-12T14:44:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.21/7268
url http://hdl.handle.net/10400.21/7268
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv SILVA, Pedro V.; SOARES, Filipa. - Howson's property for semidirect products of semilattices by groups. Communications in Algebra. ISSN 0092-7872. Vol. 44, N.º 6, (2016), pp. 2482–2494
0092-7872
10.1080/00927872.2015.1053903
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133421991100416