Geomicrobiology of a seawater-influenced active sulfuric acid cave.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/28390 https://doi.org/10.1371/journal.pone.0220706 |
Resumo: | Fetida Cave is an active sulfuric acid cave influenced by seawater, showing abundant microbial communities that organize themselves under three main different morphologies: water filaments, vermiculations and moonmilk deposits. These biofilms/deposits have different cave distribution, pH, macro- and microelement and mineralogical composition, carbon and nitrogen content. In particular, water filaments and vermiculations had circumneutral and slightly acidic pH, respectively, both had abundant organic carbon and high microbial diversity. They were rich in macro- and microelements, deriving from mineral dissolution, and, in the case of water filaments, from seawater composition. Vermiculations had different color, partly associated with their mineralogy, and unusual minerals probably due to trapping capacities. Moonmilk was composed of gypsum, poor in organic matter, had an extremely low pH (0–1) and low microbial diversity. Based on 16S rRNA gene analysis, the microbial composition of the biofilms/deposits included autotrophic taxa associated with sulfur and nitrogen cycles and biomineralization processes. In particular, water filaments communities were characterized by bacterial taxa involved in sulfur oxidation and reduction in aquatic, aphotic, microaerophilic/anoxic environments (Campylobacterales, Thiotrichales, Arenicellales, Desulfobacterales, Desulforomonadales) and in chemolithotrophy in marine habitats (Oceanospirillales, Chromatiales). Their biodiversity was linked to the morphology of the water filaments and their collection site. Microbial communities within vermiculations were partly related to their color and showed high abundance of unclassified Betaproteobacteria and sulfur-oxidizing Hydrogenophilales (including Sulfuriferula), and Acidiferrobacterales (including Sulfurifustis), sulfur-reducing Desulfurellales, and ammonia-oxidizing Planctomycetes and Nitrospirae. The microbial community associated with gypsum moonmilk showed the strong dominance (>60%) of the archaeal genus Thermoplasma and lower abundance of chemolithotrophic Acidithiobacillus, metal-oxidizing Metallibacterium, Sulfobacillus, and Acidibacillus. This study describes the geomicrobiology of water filaments, vermiculations and gypsum moonmilk from Fetida Cave, providing insights into the microbial taxa that characterize each morphology and contribute to biogeochemical cycles and speleogenesis of this peculiar seawater-influenced sulfuric acid cave. |
id |
RCAP_f1067cda5ad002c24dc5d45139dcdbc3 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/28390 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Geomicrobiology of a seawater-influenced active sulfuric acid cave.Fetida Cave is an active sulfuric acid cave influenced by seawater, showing abundant microbial communities that organize themselves under three main different morphologies: water filaments, vermiculations and moonmilk deposits. These biofilms/deposits have different cave distribution, pH, macro- and microelement and mineralogical composition, carbon and nitrogen content. In particular, water filaments and vermiculations had circumneutral and slightly acidic pH, respectively, both had abundant organic carbon and high microbial diversity. They were rich in macro- and microelements, deriving from mineral dissolution, and, in the case of water filaments, from seawater composition. Vermiculations had different color, partly associated with their mineralogy, and unusual minerals probably due to trapping capacities. Moonmilk was composed of gypsum, poor in organic matter, had an extremely low pH (0–1) and low microbial diversity. Based on 16S rRNA gene analysis, the microbial composition of the biofilms/deposits included autotrophic taxa associated with sulfur and nitrogen cycles and biomineralization processes. In particular, water filaments communities were characterized by bacterial taxa involved in sulfur oxidation and reduction in aquatic, aphotic, microaerophilic/anoxic environments (Campylobacterales, Thiotrichales, Arenicellales, Desulfobacterales, Desulforomonadales) and in chemolithotrophy in marine habitats (Oceanospirillales, Chromatiales). Their biodiversity was linked to the morphology of the water filaments and their collection site. Microbial communities within vermiculations were partly related to their color and showed high abundance of unclassified Betaproteobacteria and sulfur-oxidizing Hydrogenophilales (including Sulfuriferula), and Acidiferrobacterales (including Sulfurifustis), sulfur-reducing Desulfurellales, and ammonia-oxidizing Planctomycetes and Nitrospirae. The microbial community associated with gypsum moonmilk showed the strong dominance (>60%) of the archaeal genus Thermoplasma and lower abundance of chemolithotrophic Acidithiobacillus, metal-oxidizing Metallibacterium, Sulfobacillus, and Acidibacillus. This study describes the geomicrobiology of water filaments, vermiculations and gypsum moonmilk from Fetida Cave, providing insights into the microbial taxa that characterize each morphology and contribute to biogeochemical cycles and speleogenesis of this peculiar seawater-influenced sulfuric acid cave.PLoS ONE2020-11-24T12:28:45Z2020-11-242019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/28390http://hdl.handle.net/10174/28390https://doi.org/10.1371/journal.pone.0220706engD’Angeli IM, Ghezzi D, Leuko S, Firrincieli A, Parise M, Fiorucci A, Vigna B, Addesso R, Baldantoni D, Carbone C, Miller AZ, Jurado V, Saiz-Jimenez C, De Waele J, Cappelletti M (2019). Geomicrobiology of a seawater-influenced active sulfuric acid cave. PLoS ONE 14: e0220706.ndndndndndndndndndndanamiller@uevora.ptndndndD’Angeli, I.M.Ghezzi, D.Leuko, S.Firrincieli, A.Parise, M.Fiorucci, A.Vigna, B.Addesso, R.Baldantoni, D.Carbone, C.Miller, A.Z.Jurado, V.Saiz-Jimenez, C.De Waele, J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:24:44Zoai:dspace.uevora.pt:10174/28390Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:18:20.690666Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Geomicrobiology of a seawater-influenced active sulfuric acid cave. |
title |
Geomicrobiology of a seawater-influenced active sulfuric acid cave. |
spellingShingle |
Geomicrobiology of a seawater-influenced active sulfuric acid cave. D’Angeli, I.M. |
title_short |
Geomicrobiology of a seawater-influenced active sulfuric acid cave. |
title_full |
Geomicrobiology of a seawater-influenced active sulfuric acid cave. |
title_fullStr |
Geomicrobiology of a seawater-influenced active sulfuric acid cave. |
title_full_unstemmed |
Geomicrobiology of a seawater-influenced active sulfuric acid cave. |
title_sort |
Geomicrobiology of a seawater-influenced active sulfuric acid cave. |
author |
D’Angeli, I.M. |
author_facet |
D’Angeli, I.M. Ghezzi, D. Leuko, S. Firrincieli, A. Parise, M. Fiorucci, A. Vigna, B. Addesso, R. Baldantoni, D. Carbone, C. Miller, A.Z. Jurado, V. Saiz-Jimenez, C. De Waele, J. |
author_role |
author |
author2 |
Ghezzi, D. Leuko, S. Firrincieli, A. Parise, M. Fiorucci, A. Vigna, B. Addesso, R. Baldantoni, D. Carbone, C. Miller, A.Z. Jurado, V. Saiz-Jimenez, C. De Waele, J. |
author2_role |
author author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
D’Angeli, I.M. Ghezzi, D. Leuko, S. Firrincieli, A. Parise, M. Fiorucci, A. Vigna, B. Addesso, R. Baldantoni, D. Carbone, C. Miller, A.Z. Jurado, V. Saiz-Jimenez, C. De Waele, J. |
description |
Fetida Cave is an active sulfuric acid cave influenced by seawater, showing abundant microbial communities that organize themselves under three main different morphologies: water filaments, vermiculations and moonmilk deposits. These biofilms/deposits have different cave distribution, pH, macro- and microelement and mineralogical composition, carbon and nitrogen content. In particular, water filaments and vermiculations had circumneutral and slightly acidic pH, respectively, both had abundant organic carbon and high microbial diversity. They were rich in macro- and microelements, deriving from mineral dissolution, and, in the case of water filaments, from seawater composition. Vermiculations had different color, partly associated with their mineralogy, and unusual minerals probably due to trapping capacities. Moonmilk was composed of gypsum, poor in organic matter, had an extremely low pH (0–1) and low microbial diversity. Based on 16S rRNA gene analysis, the microbial composition of the biofilms/deposits included autotrophic taxa associated with sulfur and nitrogen cycles and biomineralization processes. In particular, water filaments communities were characterized by bacterial taxa involved in sulfur oxidation and reduction in aquatic, aphotic, microaerophilic/anoxic environments (Campylobacterales, Thiotrichales, Arenicellales, Desulfobacterales, Desulforomonadales) and in chemolithotrophy in marine habitats (Oceanospirillales, Chromatiales). Their biodiversity was linked to the morphology of the water filaments and their collection site. Microbial communities within vermiculations were partly related to their color and showed high abundance of unclassified Betaproteobacteria and sulfur-oxidizing Hydrogenophilales (including Sulfuriferula), and Acidiferrobacterales (including Sulfurifustis), sulfur-reducing Desulfurellales, and ammonia-oxidizing Planctomycetes and Nitrospirae. The microbial community associated with gypsum moonmilk showed the strong dominance (>60%) of the archaeal genus Thermoplasma and lower abundance of chemolithotrophic Acidithiobacillus, metal-oxidizing Metallibacterium, Sulfobacillus, and Acidibacillus. This study describes the geomicrobiology of water filaments, vermiculations and gypsum moonmilk from Fetida Cave, providing insights into the microbial taxa that characterize each morphology and contribute to biogeochemical cycles and speleogenesis of this peculiar seawater-influenced sulfuric acid cave. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01T00:00:00Z 2020-11-24T12:28:45Z 2020-11-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/28390 http://hdl.handle.net/10174/28390 https://doi.org/10.1371/journal.pone.0220706 |
url |
http://hdl.handle.net/10174/28390 https://doi.org/10.1371/journal.pone.0220706 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
D’Angeli IM, Ghezzi D, Leuko S, Firrincieli A, Parise M, Fiorucci A, Vigna B, Addesso R, Baldantoni D, Carbone C, Miller AZ, Jurado V, Saiz-Jimenez C, De Waele J, Cappelletti M (2019). Geomicrobiology of a seawater-influenced active sulfuric acid cave. PLoS ONE 14: e0220706. nd nd nd nd nd nd nd nd nd nd anamiller@uevora.pt nd nd nd |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
PLoS ONE |
publisher.none.fl_str_mv |
PLoS ONE |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136664973475840 |