Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremes

Detalhes bibliográficos
Autor(a) principal: Mendes, Jorge M.
Data de Publicação: 2010
Outros Autores: Bermudez, Patricia Cortés de Zea, Pereira, J.M.C., Turkman, K.F., Vasconcelos, M.J.P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.5/5956
Resumo: In Portugal, due to the combination of climatological and ecological factors, large wildfires are a constant threat and due to their economic impact, a big policy issue. In order to organize efficient fire fighting capacity and resource management, correct quantification of the risk of large wildfires are needed. In this paper, we quantify the regional risk of large wildfire sizes, by fitting a Generalized Pareto distribution to excesses over a suitably chosen high threshold. Spatio-temporal variations are introduced into the model through model parameters with suitably chosen link functions. The inference on these models are carried using Bayesian Hierarchical Models and Markov chain Monte Carlo methods.
id RCAP_f10d2f92bce304439bb6690fd01a0d1c
oai_identifier_str oai:www.repository.utl.pt:10400.5/5956
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremesBayesian hierarchical modelsgeneralized Pareto distributionspatial and temporal processesMCMCIn Portugal, due to the combination of climatological and ecological factors, large wildfires are a constant threat and due to their economic impact, a big policy issue. In order to organize efficient fire fighting capacity and resource management, correct quantification of the risk of large wildfires are needed. In this paper, we quantify the regional risk of large wildfire sizes, by fitting a Generalized Pareto distribution to excesses over a suitably chosen high threshold. Spatio-temporal variations are introduced into the model through model parameters with suitably chosen link functions. The inference on these models are carried using Bayesian Hierarchical Models and Markov chain Monte Carlo methods.SpringerRepositório da Universidade de LisboaMendes, Jorge M.Bermudez, Patricia Cortés de ZeaPereira, J.M.C.Turkman, K.F.Vasconcelos, M.J.P.2013-09-05T14:59:57Z20102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/5956eng"Environmental and Ecological Statistics". ISSN 1352-8505. 17 (2010) 1-281352-8505info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-06T14:36:50Zoai:www.repository.utl.pt:10400.5/5956Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:53:22.093703Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremes
title Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremes
spellingShingle Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremes
Mendes, Jorge M.
Bayesian hierarchical models
generalized Pareto distribution
spatial and temporal processes
MCMC
title_short Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremes
title_full Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremes
title_fullStr Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremes
title_full_unstemmed Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremes
title_sort Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremes
author Mendes, Jorge M.
author_facet Mendes, Jorge M.
Bermudez, Patricia Cortés de Zea
Pereira, J.M.C.
Turkman, K.F.
Vasconcelos, M.J.P.
author_role author
author2 Bermudez, Patricia Cortés de Zea
Pereira, J.M.C.
Turkman, K.F.
Vasconcelos, M.J.P.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Mendes, Jorge M.
Bermudez, Patricia Cortés de Zea
Pereira, J.M.C.
Turkman, K.F.
Vasconcelos, M.J.P.
dc.subject.por.fl_str_mv Bayesian hierarchical models
generalized Pareto distribution
spatial and temporal processes
MCMC
topic Bayesian hierarchical models
generalized Pareto distribution
spatial and temporal processes
MCMC
description In Portugal, due to the combination of climatological and ecological factors, large wildfires are a constant threat and due to their economic impact, a big policy issue. In order to organize efficient fire fighting capacity and resource management, correct quantification of the risk of large wildfires are needed. In this paper, we quantify the regional risk of large wildfire sizes, by fitting a Generalized Pareto distribution to excesses over a suitably chosen high threshold. Spatio-temporal variations are introduced into the model through model parameters with suitably chosen link functions. The inference on these models are carried using Bayesian Hierarchical Models and Markov chain Monte Carlo methods.
publishDate 2010
dc.date.none.fl_str_mv 2010
2010-01-01T00:00:00Z
2013-09-05T14:59:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.5/5956
url http://hdl.handle.net/10400.5/5956
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv "Environmental and Ecological Statistics". ISSN 1352-8505. 17 (2010) 1-28
1352-8505
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131009431633920