Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/5956 |
Resumo: | In Portugal, due to the combination of climatological and ecological factors, large wildfires are a constant threat and due to their economic impact, a big policy issue. In order to organize efficient fire fighting capacity and resource management, correct quantification of the risk of large wildfires are needed. In this paper, we quantify the regional risk of large wildfire sizes, by fitting a Generalized Pareto distribution to excesses over a suitably chosen high threshold. Spatio-temporal variations are introduced into the model through model parameters with suitably chosen link functions. The inference on these models are carried using Bayesian Hierarchical Models and Markov chain Monte Carlo methods. |
id |
RCAP_f10d2f92bce304439bb6690fd01a0d1c |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/5956 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremesBayesian hierarchical modelsgeneralized Pareto distributionspatial and temporal processesMCMCIn Portugal, due to the combination of climatological and ecological factors, large wildfires are a constant threat and due to their economic impact, a big policy issue. In order to organize efficient fire fighting capacity and resource management, correct quantification of the risk of large wildfires are needed. In this paper, we quantify the regional risk of large wildfire sizes, by fitting a Generalized Pareto distribution to excesses over a suitably chosen high threshold. Spatio-temporal variations are introduced into the model through model parameters with suitably chosen link functions. The inference on these models are carried using Bayesian Hierarchical Models and Markov chain Monte Carlo methods.SpringerRepositório da Universidade de LisboaMendes, Jorge M.Bermudez, Patricia Cortés de ZeaPereira, J.M.C.Turkman, K.F.Vasconcelos, M.J.P.2013-09-05T14:59:57Z20102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/5956eng"Environmental and Ecological Statistics". ISSN 1352-8505. 17 (2010) 1-281352-8505info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-06T14:36:50Zoai:www.repository.utl.pt:10400.5/5956Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:53:22.093703Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremes |
title |
Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremes |
spellingShingle |
Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremes Mendes, Jorge M. Bayesian hierarchical models generalized Pareto distribution spatial and temporal processes MCMC |
title_short |
Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremes |
title_full |
Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremes |
title_fullStr |
Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremes |
title_full_unstemmed |
Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremes |
title_sort |
Spatial extremes of wildfire sizes: Bayesian hieralquical models for extremes |
author |
Mendes, Jorge M. |
author_facet |
Mendes, Jorge M. Bermudez, Patricia Cortés de Zea Pereira, J.M.C. Turkman, K.F. Vasconcelos, M.J.P. |
author_role |
author |
author2 |
Bermudez, Patricia Cortés de Zea Pereira, J.M.C. Turkman, K.F. Vasconcelos, M.J.P. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Mendes, Jorge M. Bermudez, Patricia Cortés de Zea Pereira, J.M.C. Turkman, K.F. Vasconcelos, M.J.P. |
dc.subject.por.fl_str_mv |
Bayesian hierarchical models generalized Pareto distribution spatial and temporal processes MCMC |
topic |
Bayesian hierarchical models generalized Pareto distribution spatial and temporal processes MCMC |
description |
In Portugal, due to the combination of climatological and ecological factors, large wildfires are a constant threat and due to their economic impact, a big policy issue. In order to organize efficient fire fighting capacity and resource management, correct quantification of the risk of large wildfires are needed. In this paper, we quantify the regional risk of large wildfire sizes, by fitting a Generalized Pareto distribution to excesses over a suitably chosen high threshold. Spatio-temporal variations are introduced into the model through model parameters with suitably chosen link functions. The inference on these models are carried using Bayesian Hierarchical Models and Markov chain Monte Carlo methods. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 2010-01-01T00:00:00Z 2013-09-05T14:59:57Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/5956 |
url |
http://hdl.handle.net/10400.5/5956 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Environmental and Ecological Statistics". ISSN 1352-8505. 17 (2010) 1-28 1352-8505 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131009431633920 |