Identification of molecular targets for myotonic dystrophy type 1 using a proteomic approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/40929 |
Resumo: | Muscular dystrophies encompass a diverse set of inherited diseases marked by muscle weakness, muscle mass reduction, and occasionally, central nervous system dysfunction. Myotonic dystrophy type 1 (DM1) is an autosomal dominant muscular disorder caused by the expansion of trinucleotides (CTG) in the 3'-untranslated region of the DMPK gene. DM1 patients experience severe symptoms that impact the skeletal muscle system, including myotonia and muscle weakness and atrophy, along with various multisystemic manifestations. Despite extensive research efforts to unravel the molecular mechanisms underlying DM1, there remains a significant knowledge gap, necessitating further investigation to comprehensively understand DM1 pathophysiology. To address this, we conducted a quantitative mass spectrometry analysis of fibroblasts derived from DM1 patients with 1000 (DM_1000) and 2000 CTG repeats (DM1_2000), comparing them to control fibroblasts. Using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS), we identified 203 differentially expressed proteins (DEPs) in DM1_1000 and 190 DEPs in DM1_2000. Furthermore, a functional bioinformatic analysis of these DEPs revealed that several crucial biological processes, including muscular contraction-relaxation, metabolism of small molecules such as fatty acids and amino acids, glucose metabolism, myogenesis, muscle regeneration/degeneration, skeletal muscle architecture maintenance, and L-arginine biosynthesis are deregulated in DM1. We pinpointed five proteins of particular interest involved in myogenesis, muscle contraction, and muscle bioenergetics: TRPV2, a calcium flux-mediating cationic channel; ASS and ASL, enzymes responsible for L-arginine production; GAA, an enzyme that breaks down glycogen to glucose in lysosomes; and TNK2, a serine/threonine-protein kinase that directly phosphorylates Akt. Additionally, we validated the differences in protein expression of these proteins using immunoblotting and immunocytochemistry techniques. Concluding, our results shed light on potential protein targets and signaling pathways that could be used to develop disease-modifying therapies for DM1. This study offers fresh insights into DM1 pathophysiology and serves as a valuable foundation for future investigations. We recommend further research that includes functional validation of molecular targets, the use of relevant cell models like myoblasts and myotubes, and an assessment of disease severity across different DM1 phenotypes. Additionally, exploring phosphoproteome associated to DMPK protein may provide additional insights into DM1 mechanisms, potentially inspiring innovative treatment strategies. |
id |
RCAP_f136a4f8250f4872fea8fa96b24f3def |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/40929 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Identification of molecular targets for myotonic dystrophy type 1 using a proteomic approachMuscular dystrophiesMyotonic dystrophy type 1Human fibroblastsProteomicsBioinformatic analysisSignaling pathwaysMuscular dystrophies encompass a diverse set of inherited diseases marked by muscle weakness, muscle mass reduction, and occasionally, central nervous system dysfunction. Myotonic dystrophy type 1 (DM1) is an autosomal dominant muscular disorder caused by the expansion of trinucleotides (CTG) in the 3'-untranslated region of the DMPK gene. DM1 patients experience severe symptoms that impact the skeletal muscle system, including myotonia and muscle weakness and atrophy, along with various multisystemic manifestations. Despite extensive research efforts to unravel the molecular mechanisms underlying DM1, there remains a significant knowledge gap, necessitating further investigation to comprehensively understand DM1 pathophysiology. To address this, we conducted a quantitative mass spectrometry analysis of fibroblasts derived from DM1 patients with 1000 (DM_1000) and 2000 CTG repeats (DM1_2000), comparing them to control fibroblasts. Using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS), we identified 203 differentially expressed proteins (DEPs) in DM1_1000 and 190 DEPs in DM1_2000. Furthermore, a functional bioinformatic analysis of these DEPs revealed that several crucial biological processes, including muscular contraction-relaxation, metabolism of small molecules such as fatty acids and amino acids, glucose metabolism, myogenesis, muscle regeneration/degeneration, skeletal muscle architecture maintenance, and L-arginine biosynthesis are deregulated in DM1. We pinpointed five proteins of particular interest involved in myogenesis, muscle contraction, and muscle bioenergetics: TRPV2, a calcium flux-mediating cationic channel; ASS and ASL, enzymes responsible for L-arginine production; GAA, an enzyme that breaks down glycogen to glucose in lysosomes; and TNK2, a serine/threonine-protein kinase that directly phosphorylates Akt. Additionally, we validated the differences in protein expression of these proteins using immunoblotting and immunocytochemistry techniques. Concluding, our results shed light on potential protein targets and signaling pathways that could be used to develop disease-modifying therapies for DM1. This study offers fresh insights into DM1 pathophysiology and serves as a valuable foundation for future investigations. We recommend further research that includes functional validation of molecular targets, the use of relevant cell models like myoblasts and myotubes, and an assessment of disease severity across different DM1 phenotypes. Additionally, exploring phosphoproteome associated to DMPK protein may provide additional insights into DM1 mechanisms, potentially inspiring innovative treatment strategies.As distrofias musculares abrangem um conjunto diversificado de doenças hereditárias marcadas por fraqueza muscular, redução da massa muscular e, ocasionalmente, anomalias do sistema nervoso. A distrofia miotónica tipo 1 (DM1) é uma doença muscular autossómica dominante causada pela expansão de trinucleotídeos (CTG) na região 3' não traduzida do gene DMPK. Doentes com DM1 apresentam sintomas graves que afetam o sistema muscular esquelético, incluindo miotonia e atrofia e fraqueza muscular, juntamente com várias manifestações multissistémicas. Apesar dos extensos esforços de investigação para desvendar os mecanismos moleculares da DM1, ainda existe uma lacuna significativa de conhecimento, sendo necessário mais investigação para compreender de forma abrangente a fisiopatologia da DM1. Assim, neste trabalho realizámos uma análise quantitativa por espectrometria de massa de fibroblastos derivados de doentes com DM1 com 1000 (DM1_1000) e 2000 repetições CTG (DM1_2000), comparando-os com fibroblastos de controlos. Utilizando cromatografia líquida acoplada à espectrometria de massa em tandem (LC-MS/MS), identificamos 203 proteínas diferencialmente expressas (DEPs) em DM1_1000 e 190 DEPs em DM1_2000. Além disso, a análise bioinformática funcional destes DEPs revelou que a DM1 pode perturbar vários processos biológicos cruciais, incluindo o processo de contração-relaxamento muscular, metabolismo de pequenas moléculas, como ácidos gordos e aminoácidos, metabolismo da glicose, miogénese, regeneração/degeneração muscular, manutenção da arquitetura muscular esquelética e biossíntese de L-arginina. Identificamos ainda 5 proteínas de particular interesse envolvidas na miogénese, contração muscular e bioenergética muscular: a TRPV2, um canal catiónico mediador do fluxo de cálcio; a ASS e ASL, enzimas responsáveis pela produção de L-arginina; a GAA, uma enzima que decompõe o glicogênio em glicose nos lisossomas; e a TNK2, uma proteína quinase serina/treonina que fosforila diretamente a Akt. Além disso, utilizamos técnicas de immunoblotting e imunocitoquímica para validar as diferenças na expressão proteica dessas proteínas. Concluindo, os nossos resultados identificam potenciais alvos proteicos e vias de sinalização que poderão ser usados para desenvolver terapias modificadoras para a DM1. Este estudo oferece novo conhecimento sobre a fisiopatologia da DM1 e serve como um ponto de partida para futuras investigações. Recomendamos, assim, mais pesquisas que incluam validação funcional dos alvos moleculares, o uso de modelos celulares relevantes, como mioblastos e miotubos, e uma avaliação da severidade da doença em diferentes fenótipos de DM1. Além disso, a exploração do fosfoproteoma associado à proteína DMPK pode fornecer informações adicionais sobre os mecanismos do DM1, inspirando potencialmente estratégias de tratamento inovadoras.2025-12-22T00:00:00Z2023-12-13T00:00:00Z2023-12-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/40929engCruz, Ana Catarina Andradeinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T01:46:48Zoai:ria.ua.pt:10773/40929Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:19:53.927337Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Identification of molecular targets for myotonic dystrophy type 1 using a proteomic approach |
title |
Identification of molecular targets for myotonic dystrophy type 1 using a proteomic approach |
spellingShingle |
Identification of molecular targets for myotonic dystrophy type 1 using a proteomic approach Cruz, Ana Catarina Andrade Muscular dystrophies Myotonic dystrophy type 1 Human fibroblasts Proteomics Bioinformatic analysis Signaling pathways |
title_short |
Identification of molecular targets for myotonic dystrophy type 1 using a proteomic approach |
title_full |
Identification of molecular targets for myotonic dystrophy type 1 using a proteomic approach |
title_fullStr |
Identification of molecular targets for myotonic dystrophy type 1 using a proteomic approach |
title_full_unstemmed |
Identification of molecular targets for myotonic dystrophy type 1 using a proteomic approach |
title_sort |
Identification of molecular targets for myotonic dystrophy type 1 using a proteomic approach |
author |
Cruz, Ana Catarina Andrade |
author_facet |
Cruz, Ana Catarina Andrade |
author_role |
author |
dc.contributor.author.fl_str_mv |
Cruz, Ana Catarina Andrade |
dc.subject.por.fl_str_mv |
Muscular dystrophies Myotonic dystrophy type 1 Human fibroblasts Proteomics Bioinformatic analysis Signaling pathways |
topic |
Muscular dystrophies Myotonic dystrophy type 1 Human fibroblasts Proteomics Bioinformatic analysis Signaling pathways |
description |
Muscular dystrophies encompass a diverse set of inherited diseases marked by muscle weakness, muscle mass reduction, and occasionally, central nervous system dysfunction. Myotonic dystrophy type 1 (DM1) is an autosomal dominant muscular disorder caused by the expansion of trinucleotides (CTG) in the 3'-untranslated region of the DMPK gene. DM1 patients experience severe symptoms that impact the skeletal muscle system, including myotonia and muscle weakness and atrophy, along with various multisystemic manifestations. Despite extensive research efforts to unravel the molecular mechanisms underlying DM1, there remains a significant knowledge gap, necessitating further investigation to comprehensively understand DM1 pathophysiology. To address this, we conducted a quantitative mass spectrometry analysis of fibroblasts derived from DM1 patients with 1000 (DM_1000) and 2000 CTG repeats (DM1_2000), comparing them to control fibroblasts. Using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS), we identified 203 differentially expressed proteins (DEPs) in DM1_1000 and 190 DEPs in DM1_2000. Furthermore, a functional bioinformatic analysis of these DEPs revealed that several crucial biological processes, including muscular contraction-relaxation, metabolism of small molecules such as fatty acids and amino acids, glucose metabolism, myogenesis, muscle regeneration/degeneration, skeletal muscle architecture maintenance, and L-arginine biosynthesis are deregulated in DM1. We pinpointed five proteins of particular interest involved in myogenesis, muscle contraction, and muscle bioenergetics: TRPV2, a calcium flux-mediating cationic channel; ASS and ASL, enzymes responsible for L-arginine production; GAA, an enzyme that breaks down glycogen to glucose in lysosomes; and TNK2, a serine/threonine-protein kinase that directly phosphorylates Akt. Additionally, we validated the differences in protein expression of these proteins using immunoblotting and immunocytochemistry techniques. Concluding, our results shed light on potential protein targets and signaling pathways that could be used to develop disease-modifying therapies for DM1. This study offers fresh insights into DM1 pathophysiology and serves as a valuable foundation for future investigations. We recommend further research that includes functional validation of molecular targets, the use of relevant cell models like myoblasts and myotubes, and an assessment of disease severity across different DM1 phenotypes. Additionally, exploring phosphoproteome associated to DMPK protein may provide additional insights into DM1 mechanisms, potentially inspiring innovative treatment strategies. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-13T00:00:00Z 2023-12-13 2025-12-22T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/40929 |
url |
http://hdl.handle.net/10773/40929 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137841495670784 |