Time series forecasting with generalised additive models

Detalhes bibliográficos
Autor(a) principal: Abreu Junior, Clony Nunes de
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/34067
Resumo: Time series forecasting is an important area for many types of businesses. Retailers, over time, have frequently sought time series support in their business. This process is currently facilitated by the appearance of applications for users who are not statisticians but who know the business area. Facebook has developed an algorithm called Prophet, which proposes to make estimates based on time series in a quick and accessible way. The work analyses a dataset of 113 retail stores with data of products sold and number of customers, where it is desired to perform forecasts using Prophet and identify how effective the hyperparameter adjustments will be for improving the performance of the estimates projected by the model generated. A preprocessing of data is performed driving adjustments that best suit the use of Prophet. Next, models are created for each of the stores using default parameters and then the results are compared with the models adjusted with hyperparameters. The results presented show the particularities of each shop represented in the specific adjustments of hyperparameters that improve performance, as well as point out the sensitivity of the data to candidate outliers.
id RCAP_f1681c98807843914e15848c7aab7dcb
oai_identifier_str oai:ria.ua.pt:10773/34067
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Time series forecasting with generalised additive modelsTime seriesRegressionForecastProphetRetail salesPredictTime series forecasting is an important area for many types of businesses. Retailers, over time, have frequently sought time series support in their business. This process is currently facilitated by the appearance of applications for users who are not statisticians but who know the business area. Facebook has developed an algorithm called Prophet, which proposes to make estimates based on time series in a quick and accessible way. The work analyses a dataset of 113 retail stores with data of products sold and number of customers, where it is desired to perform forecasts using Prophet and identify how effective the hyperparameter adjustments will be for improving the performance of the estimates projected by the model generated. A preprocessing of data is performed driving adjustments that best suit the use of Prophet. Next, models are created for each of the stores using default parameters and then the results are compared with the models adjusted with hyperparameters. The results presented show the particularities of each shop represented in the specific adjustments of hyperparameters that improve performance, as well as point out the sensitivity of the data to candidate outliers.A previsão de séries temporais é uma área importante para vários tipos de negócios. Os varejistas, ao longo do tempo, têm procurado frequentemente apoio de técnicas de previsão na gestão do negócio. Este processo é actualmente facilitado com o aparecimento de aplicações para utilizadores não especilistas na área de estatística mas que conheçam a área de negócio. O Facebook desenvolveu um algoritmo chamado Prophet, que se propõe a fazer estimativas baseadas em séries temporais de forma rápida e acessível. Este trabalho analisa um conjunto de dados de 113 lojas de varejo com dados de produtos vendidos e número de clientes, onde se deseja realizar previsões usando o Prophet e identificar quão eficazes serão os ajustes do hiperparâmetro para melhorar o desempenho das estimativas projetadas pelo modelo gerado. Um pré-processamento dos dados é realizado conduzindo aos ajustes que melhor se adequam ao uso do Prophet. Em seguida, são criados modelos para cada uma das lojas usando parâmetros com valores por omissão e, em seguida, os resultados são comparados com os modelos ajustados com hiperparâmetros. Os resultados apresentados mostram as particularidades de cada loja representadas nos ajustes específicos dos hiperparâmetros que melhoram a performance do modelo, bem como apontam a sensibilidade dos dados para os outliers candidatos.2022-06-28T08:22:03Z2021-12-17T00:00:00Z2021-12-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/34067engAbreu Junior, Clony Nunes deinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:05:39Zoai:ria.ua.pt:10773/34067Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:25.785632Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Time series forecasting with generalised additive models
title Time series forecasting with generalised additive models
spellingShingle Time series forecasting with generalised additive models
Abreu Junior, Clony Nunes de
Time series
Regression
Forecast
Prophet
Retail sales
Predict
title_short Time series forecasting with generalised additive models
title_full Time series forecasting with generalised additive models
title_fullStr Time series forecasting with generalised additive models
title_full_unstemmed Time series forecasting with generalised additive models
title_sort Time series forecasting with generalised additive models
author Abreu Junior, Clony Nunes de
author_facet Abreu Junior, Clony Nunes de
author_role author
dc.contributor.author.fl_str_mv Abreu Junior, Clony Nunes de
dc.subject.por.fl_str_mv Time series
Regression
Forecast
Prophet
Retail sales
Predict
topic Time series
Regression
Forecast
Prophet
Retail sales
Predict
description Time series forecasting is an important area for many types of businesses. Retailers, over time, have frequently sought time series support in their business. This process is currently facilitated by the appearance of applications for users who are not statisticians but who know the business area. Facebook has developed an algorithm called Prophet, which proposes to make estimates based on time series in a quick and accessible way. The work analyses a dataset of 113 retail stores with data of products sold and number of customers, where it is desired to perform forecasts using Prophet and identify how effective the hyperparameter adjustments will be for improving the performance of the estimates projected by the model generated. A preprocessing of data is performed driving adjustments that best suit the use of Prophet. Next, models are created for each of the stores using default parameters and then the results are compared with the models adjusted with hyperparameters. The results presented show the particularities of each shop represented in the specific adjustments of hyperparameters that improve performance, as well as point out the sensitivity of the data to candidate outliers.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-17T00:00:00Z
2021-12-17
2022-06-28T08:22:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/34067
url http://hdl.handle.net/10773/34067
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137709454786560