Time series forecasting with generalised additive models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/34067 |
Resumo: | Time series forecasting is an important area for many types of businesses. Retailers, over time, have frequently sought time series support in their business. This process is currently facilitated by the appearance of applications for users who are not statisticians but who know the business area. Facebook has developed an algorithm called Prophet, which proposes to make estimates based on time series in a quick and accessible way. The work analyses a dataset of 113 retail stores with data of products sold and number of customers, where it is desired to perform forecasts using Prophet and identify how effective the hyperparameter adjustments will be for improving the performance of the estimates projected by the model generated. A preprocessing of data is performed driving adjustments that best suit the use of Prophet. Next, models are created for each of the stores using default parameters and then the results are compared with the models adjusted with hyperparameters. The results presented show the particularities of each shop represented in the specific adjustments of hyperparameters that improve performance, as well as point out the sensitivity of the data to candidate outliers. |
id |
RCAP_f1681c98807843914e15848c7aab7dcb |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/34067 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Time series forecasting with generalised additive modelsTime seriesRegressionForecastProphetRetail salesPredictTime series forecasting is an important area for many types of businesses. Retailers, over time, have frequently sought time series support in their business. This process is currently facilitated by the appearance of applications for users who are not statisticians but who know the business area. Facebook has developed an algorithm called Prophet, which proposes to make estimates based on time series in a quick and accessible way. The work analyses a dataset of 113 retail stores with data of products sold and number of customers, where it is desired to perform forecasts using Prophet and identify how effective the hyperparameter adjustments will be for improving the performance of the estimates projected by the model generated. A preprocessing of data is performed driving adjustments that best suit the use of Prophet. Next, models are created for each of the stores using default parameters and then the results are compared with the models adjusted with hyperparameters. The results presented show the particularities of each shop represented in the specific adjustments of hyperparameters that improve performance, as well as point out the sensitivity of the data to candidate outliers.A previsão de séries temporais é uma área importante para vários tipos de negócios. Os varejistas, ao longo do tempo, têm procurado frequentemente apoio de técnicas de previsão na gestão do negócio. Este processo é actualmente facilitado com o aparecimento de aplicações para utilizadores não especilistas na área de estatística mas que conheçam a área de negócio. O Facebook desenvolveu um algoritmo chamado Prophet, que se propõe a fazer estimativas baseadas em séries temporais de forma rápida e acessível. Este trabalho analisa um conjunto de dados de 113 lojas de varejo com dados de produtos vendidos e número de clientes, onde se deseja realizar previsões usando o Prophet e identificar quão eficazes serão os ajustes do hiperparâmetro para melhorar o desempenho das estimativas projetadas pelo modelo gerado. Um pré-processamento dos dados é realizado conduzindo aos ajustes que melhor se adequam ao uso do Prophet. Em seguida, são criados modelos para cada uma das lojas usando parâmetros com valores por omissão e, em seguida, os resultados são comparados com os modelos ajustados com hiperparâmetros. Os resultados apresentados mostram as particularidades de cada loja representadas nos ajustes específicos dos hiperparâmetros que melhoram a performance do modelo, bem como apontam a sensibilidade dos dados para os outliers candidatos.2022-06-28T08:22:03Z2021-12-17T00:00:00Z2021-12-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/34067engAbreu Junior, Clony Nunes deinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:05:39Zoai:ria.ua.pt:10773/34067Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:25.785632Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Time series forecasting with generalised additive models |
title |
Time series forecasting with generalised additive models |
spellingShingle |
Time series forecasting with generalised additive models Abreu Junior, Clony Nunes de Time series Regression Forecast Prophet Retail sales Predict |
title_short |
Time series forecasting with generalised additive models |
title_full |
Time series forecasting with generalised additive models |
title_fullStr |
Time series forecasting with generalised additive models |
title_full_unstemmed |
Time series forecasting with generalised additive models |
title_sort |
Time series forecasting with generalised additive models |
author |
Abreu Junior, Clony Nunes de |
author_facet |
Abreu Junior, Clony Nunes de |
author_role |
author |
dc.contributor.author.fl_str_mv |
Abreu Junior, Clony Nunes de |
dc.subject.por.fl_str_mv |
Time series Regression Forecast Prophet Retail sales Predict |
topic |
Time series Regression Forecast Prophet Retail sales Predict |
description |
Time series forecasting is an important area for many types of businesses. Retailers, over time, have frequently sought time series support in their business. This process is currently facilitated by the appearance of applications for users who are not statisticians but who know the business area. Facebook has developed an algorithm called Prophet, which proposes to make estimates based on time series in a quick and accessible way. The work analyses a dataset of 113 retail stores with data of products sold and number of customers, where it is desired to perform forecasts using Prophet and identify how effective the hyperparameter adjustments will be for improving the performance of the estimates projected by the model generated. A preprocessing of data is performed driving adjustments that best suit the use of Prophet. Next, models are created for each of the stores using default parameters and then the results are compared with the models adjusted with hyperparameters. The results presented show the particularities of each shop represented in the specific adjustments of hyperparameters that improve performance, as well as point out the sensitivity of the data to candidate outliers. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-17T00:00:00Z 2021-12-17 2022-06-28T08:22:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/34067 |
url |
http://hdl.handle.net/10773/34067 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137709454786560 |