A study of intense rainfall events in Madeira Island using numerical Models

Detalhes bibliográficos
Autor(a) principal: Couto, Flavio
Data de Publicação: 2011
Outros Autores: Salgado, Rui, Dasari, Hari, Costa, Maria João
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/3226
Resumo: Located in Atlantic Ocean, the Madeira Island is the largest island of the Madeira archipelago, with surface area about 737 km2, an approximately E–W elongated form and a maximum altitude of 1861m. This archipelago is a volcanic complex, with peculiar relief and climate as described by many researchers. In recent times, intense rainfall events in Madeira Island have occurred, resulting in several economical and social damages. Nowadays, the use of well defined dynamics and different physical processes in high resolution numerical models are becoming popular to predict the isolated heavily extreme rainfall episodes. These type of events that may be predicted by the high resolution numerical weather prediction models, basically depend on the design of the model, especially choice of the domain size, horizontal and vertical grid resolution, time step and usage of different physical processes. Therefore, this study aims at analyzing the main characteristics associated to the intense precipitation events in Madeira Island using numerical simulations. In this study we used the Weather Research Forecasting (WRF-ARW) model developed and distributed through the National Center for Atmospheric Research (NCAR), as well as the MESOscale Non-Hydrostatic model (MESO-NH) jointly developed by Météo-France and the Laboratoire d’Aérologie. Initial and boundary conditions are obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast models. The events were simulated using nested grids in a two-way interactive mode, in which the inner most domain, at a resolution of 1km, cover the Madeira island. Models configuration included state of art microphysical schemes for stratiform clouds and explicit precipitation. Convection schemes were activated in the coarser models. Several real cases of intense precipitation in Madeira Island were studied, in particular, the case observed on 02nd February 2010, when the Madeira Island was hit by a intense rainfall, responsible by some points of flooding and the disaster on February 20, 2010. The disaster caused more than 40 deaths, several missing and wounded people, as well as a vast range of material losses, including the destruction of houses, industries, roads, bridges and several thousands of vehicles. Initial analysis of these events suggests that the localized heavy rainfall is the product of the features of synoptic scale to local scale. Meteorologically, in the disaster case, there were several factors which contributed to this heavy rainfall event. This included the high latitude block over Greenland and the southward shift of the westerlies. In both cases is clearly possible verify the great influence of a local factor, showing that the application of numerical simulation is very efficient for meteorological studies. The results confirms the ability of high resolution non hydrostatic mesocale models in accurately simulated heavy precipitation events over isolated mountains and allows to quantify the effect of the orography on the precipitation. The results suggest some mechanisms of the generation of high precipitation over the Madeira as some relations between the large scale flow, the atmospheric hydro and thermal structure, the topography and the precipitation.
id RCAP_f1697ee209010de2252a891b5d174a8d
oai_identifier_str oai:dspace.uevora.pt:10174/3226
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A study of intense rainfall events in Madeira Island using numerical Modelsheavy rainfallnumerical modelLocated in Atlantic Ocean, the Madeira Island is the largest island of the Madeira archipelago, with surface area about 737 km2, an approximately E–W elongated form and a maximum altitude of 1861m. This archipelago is a volcanic complex, with peculiar relief and climate as described by many researchers. In recent times, intense rainfall events in Madeira Island have occurred, resulting in several economical and social damages. Nowadays, the use of well defined dynamics and different physical processes in high resolution numerical models are becoming popular to predict the isolated heavily extreme rainfall episodes. These type of events that may be predicted by the high resolution numerical weather prediction models, basically depend on the design of the model, especially choice of the domain size, horizontal and vertical grid resolution, time step and usage of different physical processes. Therefore, this study aims at analyzing the main characteristics associated to the intense precipitation events in Madeira Island using numerical simulations. In this study we used the Weather Research Forecasting (WRF-ARW) model developed and distributed through the National Center for Atmospheric Research (NCAR), as well as the MESOscale Non-Hydrostatic model (MESO-NH) jointly developed by Météo-France and the Laboratoire d’Aérologie. Initial and boundary conditions are obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast models. The events were simulated using nested grids in a two-way interactive mode, in which the inner most domain, at a resolution of 1km, cover the Madeira island. Models configuration included state of art microphysical schemes for stratiform clouds and explicit precipitation. Convection schemes were activated in the coarser models. Several real cases of intense precipitation in Madeira Island were studied, in particular, the case observed on 02nd February 2010, when the Madeira Island was hit by a intense rainfall, responsible by some points of flooding and the disaster on February 20, 2010. The disaster caused more than 40 deaths, several missing and wounded people, as well as a vast range of material losses, including the destruction of houses, industries, roads, bridges and several thousands of vehicles. Initial analysis of these events suggests that the localized heavy rainfall is the product of the features of synoptic scale to local scale. Meteorologically, in the disaster case, there were several factors which contributed to this heavy rainfall event. This included the high latitude block over Greenland and the southward shift of the westerlies. In both cases is clearly possible verify the great influence of a local factor, showing that the application of numerical simulation is very efficient for meteorological studies. The results confirms the ability of high resolution non hydrostatic mesocale models in accurately simulated heavy precipitation events over isolated mountains and allows to quantify the effect of the orography on the precipitation. The results suggest some mechanisms of the generation of high precipitation over the Madeira as some relations between the large scale flow, the atmospheric hydro and thermal structure, the topography and the precipitation.EGU2012-01-10T17:18:12Z2012-01-102011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://hdl.handle.net/10174/3226http://hdl.handle.net/10174/3226enghttp://meetingorganizer.copernicus.org/EGU2011/EGU2011-13025.pdfnaonaosimFIScouto.ft@gmail.comrsal@uevora.pthari@uevora.ptmjcosta@uevora.pt399Couto, FlavioSalgado, RuiDasari, HariCosta, Maria Joãoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:39:58Zoai:dspace.uevora.pt:10174/3226Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:58:36.869937Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A study of intense rainfall events in Madeira Island using numerical Models
title A study of intense rainfall events in Madeira Island using numerical Models
spellingShingle A study of intense rainfall events in Madeira Island using numerical Models
Couto, Flavio
heavy rainfall
numerical model
title_short A study of intense rainfall events in Madeira Island using numerical Models
title_full A study of intense rainfall events in Madeira Island using numerical Models
title_fullStr A study of intense rainfall events in Madeira Island using numerical Models
title_full_unstemmed A study of intense rainfall events in Madeira Island using numerical Models
title_sort A study of intense rainfall events in Madeira Island using numerical Models
author Couto, Flavio
author_facet Couto, Flavio
Salgado, Rui
Dasari, Hari
Costa, Maria João
author_role author
author2 Salgado, Rui
Dasari, Hari
Costa, Maria João
author2_role author
author
author
dc.contributor.author.fl_str_mv Couto, Flavio
Salgado, Rui
Dasari, Hari
Costa, Maria João
dc.subject.por.fl_str_mv heavy rainfall
numerical model
topic heavy rainfall
numerical model
description Located in Atlantic Ocean, the Madeira Island is the largest island of the Madeira archipelago, with surface area about 737 km2, an approximately E–W elongated form and a maximum altitude of 1861m. This archipelago is a volcanic complex, with peculiar relief and climate as described by many researchers. In recent times, intense rainfall events in Madeira Island have occurred, resulting in several economical and social damages. Nowadays, the use of well defined dynamics and different physical processes in high resolution numerical models are becoming popular to predict the isolated heavily extreme rainfall episodes. These type of events that may be predicted by the high resolution numerical weather prediction models, basically depend on the design of the model, especially choice of the domain size, horizontal and vertical grid resolution, time step and usage of different physical processes. Therefore, this study aims at analyzing the main characteristics associated to the intense precipitation events in Madeira Island using numerical simulations. In this study we used the Weather Research Forecasting (WRF-ARW) model developed and distributed through the National Center for Atmospheric Research (NCAR), as well as the MESOscale Non-Hydrostatic model (MESO-NH) jointly developed by Météo-France and the Laboratoire d’Aérologie. Initial and boundary conditions are obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast models. The events were simulated using nested grids in a two-way interactive mode, in which the inner most domain, at a resolution of 1km, cover the Madeira island. Models configuration included state of art microphysical schemes for stratiform clouds and explicit precipitation. Convection schemes were activated in the coarser models. Several real cases of intense precipitation in Madeira Island were studied, in particular, the case observed on 02nd February 2010, when the Madeira Island was hit by a intense rainfall, responsible by some points of flooding and the disaster on February 20, 2010. The disaster caused more than 40 deaths, several missing and wounded people, as well as a vast range of material losses, including the destruction of houses, industries, roads, bridges and several thousands of vehicles. Initial analysis of these events suggests that the localized heavy rainfall is the product of the features of synoptic scale to local scale. Meteorologically, in the disaster case, there were several factors which contributed to this heavy rainfall event. This included the high latitude block over Greenland and the southward shift of the westerlies. In both cases is clearly possible verify the great influence of a local factor, showing that the application of numerical simulation is very efficient for meteorological studies. The results confirms the ability of high resolution non hydrostatic mesocale models in accurately simulated heavy precipitation events over isolated mountains and allows to quantify the effect of the orography on the precipitation. The results suggest some mechanisms of the generation of high precipitation over the Madeira as some relations between the large scale flow, the atmospheric hydro and thermal structure, the topography and the precipitation.
publishDate 2011
dc.date.none.fl_str_mv 2011-01-01T00:00:00Z
2012-01-10T17:18:12Z
2012-01-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/3226
http://hdl.handle.net/10174/3226
url http://hdl.handle.net/10174/3226
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://meetingorganizer.copernicus.org/EGU2011/EGU2011-13025.pdf
nao
nao
sim
FIS
couto.ft@gmail.com
rsal@uevora.pt
hari@uevora.pt
mjcosta@uevora.pt
399
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv EGU
publisher.none.fl_str_mv EGU
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136469407760384